

Universität zu Köln Institut für Kernphysik Zülpicher Strasse 77 50937 Köln Deutschland

Raumladungsverteilungen in segmentierten hochreinen Germanium-Detektoren

Diplomarbeit

Benedikt Birkenbach

12. November 2009

Betreut durch Herrn Prof. Dr. P. Reiter

Inhaltsverzeichnis

1	Einl	eitung		7
	1.1	Advar	nced GAmma Tracking Array (AGATA)	7
		1.1.1	Anforderungen an AGATA	7
		1.1.2	Gamma Ray Tracking	8
		1.1.3	Pulsformanalyse	9
2	Phy		he Eigenschaften von HPGe-Detektoren	11
	2.1	Ge–Ha	albleiterdetektoren	11
		2.1.1	Halbleitertypen	12
		2.1.2	pn-Übergang	13
		2.1.3	Hochspannung in Sperrrichtung	14
	2.2	CV-N	Iessungen	16
		2.2.1	Planare Diode	16
		2.2.2	Zylindersymmetrische Diode	17
3	Kap	azitäts	messungen	19
	3.1	Ersatz	zschaltung eines AGATA-Detektors	19
		3.1.1	Aufbau eines AGATA-Detektors	19
		3.1.2	Modell	22
		3.1.3	Kennlinie	24
	3.2	Messu	ngen mit dem Pulser	27
		3.2.1	Analoge Elektronik	27
		3.2.2	Test mit bekannten Kapazitäten und Widerständen	31
		3.2.3	Messungen	33
		3.2.4	Auswertung	37
	3.3	Direkt	te Messungen	49
		3.3.1	Messprinzip	49
		3.3.2	Direkte Messungen mit Detektor S002	51
	3.4	Vergle	eiche der Messungen	53
4	Ana	lvse un	nd Simulationen	57
	4.1	•	nmung der Verunreinigungskonzentration	57
		4.1.1	Bestimmung der Verunreinigungskonzentration an der Oberfläche .	57
		4.1.2	Näherung eines Zylinderkondensators	61
	4.2		ationen	66
		4.2.1	Verfahren	66
		4 9 9	Erate Cimulationan	67

Inhaltsverzeichnis

		4.2.3	Korrekturen der Näherung	. 68
5	Zusa	ammen	fassung	73
Da	nksa	gung		85
Α	Obe	rfläche	n der Kristalle	87
В	Messungen des Herstellers 8			
C	Puls	ermess	ungen	91
	C.1	Spann	ungsversorgung	. 91
	C.2	Messu	ngen der Ersatzschaltung	. 92
	C.3	Messu	ngen mit digitalem Oszilloskop	. 96
	C.4	Fits de	er Pulsermessungen	. 96
	C.5	Result	ate der Pulsermessungen der Detektoren S002, B005, C005 und C00	06101
	C.6	Bestin	nmung der Verunreinigungskonzentration	. 152
Er	kläru	ng		165

1 Einleitung

Das Studium der Anregungszustände von Atomkernen basiert zu einem großen Teil auf der Spektroskopie von Gammastrahlung. Seit den 1960er Jahren werden Halbleiterdetektoren aus Germanium (Ge) für die Gammaspektroskopie eingesetzt. Ge-Detektoren liefern hierfür eine exzellente Auflösung bezüglich der Energie.

Die ersten Detektoren hatten sehr kleine aktive Volumina, da die Verunreinigungskonzentration der Kristalle relativ hoch war. Erste Abhilfe für dieses Problem stellten die in den frühen sechziger Jahren entwickelten Ge(Li)-Detektoren dar. Der natürliche Überschuss an p-Typ-Verunreinigungen wurde durch das Implantieren von Lithium (n-Typ) ausgeglichen, sodass größere aktive Volumina ermöglicht wurden. In den späten siebziger Jahren lösten hochreine Ge-Detektoren (HPGe) die Ge(Li)-Detektoren ab. Kristalle mit einer sehr geringen Verunreinigung bestehen nahezu komplett aus aktivem Material. Seit Anfang der achtziger Jahre werden mehrere Detektoren in Verbänden, sogenannten Arrays, betrieben. Aktuelle Entwicklungen wie AGATA [1] oder GRETA [2] nutzen segmentierte HPGe-Detektoren. Eine Zusammenfassung der Entwicklung von Ge-Detektoren bis zum jetzigen Stand ist in [3] gegeben.

1.1 Advanced GAmma Tracking Array (AGATA)

Das AGATA Projekt verfolgt das Ziel, ein aus segmentierten HPGe-Detektoren bestehendes 4π Spektrometer zur hochauflösenden Gammaspektroskopie mit exotischen Ionenstrahlen zu entwickeln. In seiner finalen Version besteht das Spektrometer aus 180 segmentierten HPGe-Detektoren, welche in 60 identischen Tripel-Kryostaten eingefasst sind. Institutionen aus zwölf europäischen Ländern, darunter Deutschland, Frankreich, Italien und England arbeiten gemeinsam an AGATA. Das amerikanische Schwesterprojekt zu AGATA ist das Gamma Ray Energy Tracking Array (GRETA) Projekt.

1.1.1 Anforderungen an AGATA

Das Design des AGATA Spektrometers muss verschiedene Anforderungen erfüllen. Ein kompletter Ball (4π) mit einem Innenradius von 23 cm und einer 9 cm dicken Germaniumschicht ermöglicht eine hohe Effizienz, sodass auch schwächste Reaktionskanäle nachgewiesen werden können. Ein gutes Peak zu Hintergrund (P/T) Verhältnis ist für ein aktuelles Spektrometer von elementarer Bedeutung. Photonen, welche über Compton–Streuung mit dem aktiven Detektormaterial wechselwirken, deponieren unter Umständen nur einen Teil ihrer Energie in einem Detektor. Das Gleiche gilt für den Effekt der Paarbildung, bei welchem eines oder beide der durch die Annihilation des Positrons entstandenen 511 keV–Photonen das aktive Detektormaterial verlassen können. Solche, nicht

E _Y < 0,1 MeV	0,1 MeV < E _Y < 8 MeV	E _Y > 8 MeV
Photoeffekt	Compton - Streuung	Paarerzeugung
© Ey e1	0 E ₁₀ E ₁₂ 0,	Ey
Isolierter Photopeak	verteilte Energiedeponierung	einfache Charakteristik
Wahrscheinlichkeit für die entsprechende Eindringtiefe	$h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_0 c^2} (1 - \cos\theta)}$	$E_{\gamma} = E_1 + 2 \cdot m_e c^2$

Abbildung 1.1: Interaktionen von Gammastrahlung mit Materie, die Energiebereiche in denen die drei Effekte dominieren gelten für Germanium als Absorbermaterial [3]

völlig erfassten Ereignisse verschlechtern das P/T-Verhältnis dramatisch und sollten entweder ignoriert oder vervollständigt werden. Eine gute Winkelauflösung der Emissionsrichtung der Gammastrahlung ist notwendig, um Dopplereffekte der sich mit bis zu 50% der Lichtgeschwindigkeit bewegenden Strahlungsquellen korrigieren zu können. Ereignisse mit einer hohen Multiplizität erfordern eine Segmentierung der Detektoren und entsprechende Routinen zur Differenzierung, da ansonsten die Energien unterschiedlicher Ereignisse aufsummiert werden könnten. Hohe Hintergrundstrahlung bei sehr schwachen radioaktiven Beschleunigerstrahlen sowie hohe Strahlstärke zur Bevölkerung schwacher Reaktionskanäle verlangen, dass das Spektrometer hohe Zählraten von bis zu 50 kHz pro Detektor verarbeiten kann.

1.1.2 Gamma Ray Tracking

Um die eben genannten Anforderungen erfüllen zu können, ist die Methode der Rückverfolgung der Gammaquanten (Gamma Ray Tracking) entwickelt worden [4]. Für diese Methode benötigt man die Positionen und Energien der einzelnen Interaktionen zu einem bestimmten Zeitpunkt. Die drei möglichen Interaktionen hinterlassen charakteristische Signaturen (siehe Abbildung 1.1). Bei dem Photoeffekt wird alle Energie an einem einzigen Ort deponiert. Die Wahrscheinlichkeit für das Auftreten des Photoeffektes an einem bestimmten Ort kann durch die Energie und die damit verbundene mittlere Eindringtiefe bestimmt werden. Die Paarbildung hat eine typische Signatur. Nach einer räumlich gut definierten Energiedeposition der beiden Leptonen, beobachtet man die Annihilationsstrahlung des fast ruhenden Positrons. Die durch die Annihilati-

on des Positrons entstandenen 511 keV-Photonen sind aufgrund der Impulserhaltung in ihrer Ausbreitungsrichtung entgegengesetzt gerichtet. Komplizierter wird es bei den durch den Compton-Effekt gestreuten Photonen. Sämtliche Interaktionen müssen gemeinsam betrachtet und nachverfolgt werden. Die Wahrscheinlichkeiten der möglichen Strahlengänge können mit Hilfe der Compton-Streuformel, der Klein-Nishinina-Formel und der Wahrscheinlichkeit des Photoeffektes des letzten Interaktionspunktes bestimmt werden. Schließlich wird das wahrscheinlichste Ereignis aus allen Pfaden und Effekten ausgewählt. Entsprechende Computeralgorithmen wurden entwickelt und ihre Leistungsfähigkeit miteinander verglichen [5].

1.1.3 Pulsformanalyse

Damit Gamma Ray Tracking funktionieren kann, muss der Ort jeder einzelnen Interaktion möglichst genau bis auf wenige Millimeter bekannt sein. Eine solch hohe Ortsauflösung kann nicht alleine durch Segmentierung erzielt werden. Die Lösung dieses Problems ist die Kombination aus Segmentierung und Pulsformanalyse. Abhängig vom Ort der Interaktion in den einzelnen Segmenten unterscheiden sich die Signale, sodass die benötigte Ortsauflösung erzielt werden kann. Dabei wird nicht nur das Segment betrachtet, in welchem die Wechselwirkung stattfand, sondern auch alle benachbarten Segmente. In ihnen werden Spiegelladungen erzeugt, welche von der empfindlichen Elektronik gemessen werden können.

Die Pulsformanalyse basiert auf dem Vergleich der Messung mit einem Referenzdatensatz. Die Qualität dieser Referenz ist elementar wichtig für ein gut funktionierendes Gamma-Ray-Tracking. Eine Methode diese Referenz zu gewinnen, stellt das Abtasten einzelner Positionen mit Hilfe einer Koinzidenzschaltung dar [6]. Weitere direkte Messmethoden wurden vorgestellt [7, 8]. Simulationen mit Hilfe eines Computers [9, 10, 11] können ebenfalls Referenzdatensätze erzeugen. Vergleiche zwischen direkten Messungen und Simulationen helfen, die freien Parameter der Simulationen anzupassen und so neue Erkenntnisse über die Eigenschaften des Detektors zu gewinnen. Trotzdem ist ein prinzipielles Verständnis der Vorgänge im Detektor grundlegend für gute und verlässliche Simulationen. Außerdem nehmen die direkten Messungen relativ viel Zeit in Anspruch und können nicht für alle Detektoren durchgeführt werden.

Die grundlegenden Parameter der Computersimulationen sind die Orientierung des Kristallgitters, die Mobilitäten der Ladungsträger, das Übersprechverhalten des Detektors und die Verunreinigungskonzentration des Kristalls. Die Orientierung des Kristallgitters ist durch die Produktion der Kristalle festgelegt. Die Mobilitäten der Ladungsträger wurden ausführlich untersucht [12, 13]. Das Übersprechverhalten, welches durch die kapazitive Kopplung der Segmente eine Eigenschaft segmentierter Ge-Detektoren ist, wurde ebenfalls untersucht und kann korrigiert werden [14]. Die Konzentration der Verunreinigung der Kristalle muss bei einer vollständigen Simulation ebenfalls berücksichtigt werden. Messungen, welche die Konzentration bestimmen sollen, dürfen die Kristalle nicht beschädigen, sollten unabhängig von anderen Kristalleigenschaften und ohne zusätzliche Hilfsmittel mit den Triple-Kryostaten des AGATA-Projektes durchführbar sein. Die experimentelle Bestimmung dieses Parameters unter den gegebenen Randbedingungen ist

1 Einleitung

Hauptbestandteil der vorliegenden Arbeit.

Für die Bestimmung der Verunreinigungskonzentration existieren unterschiedliche Methoden. Chemische Analysen und Ultraviolettspektroskopie arbeiten mit kleinen Arbeitsproben, welche dem Kristall entnommen werden. Dabei wird der Kristall beschädigt. Diese Methoden können also nicht angewendet werden. Weitere Methoden wie Neutronen Aktivierung, Photolumineszenz bei niedrigen Temperaturen, Fourier-Transformations-Infrarot-Spektroskopie (FTIR), Sekundärionen-Massenspektroskopie (SIMS) oder Rutherford-Rückstreuung (RBS) benötigen ebenfalls Proben und kommen daher nicht in Frage [15]. Röntgenfluoreszenz kommt ohne Zerstörung des Kristalls aus, ist aber nicht sehr sensitiv und aufgrund der Kapselung der Kristalle nicht durchführbar. Deep-Level Transient Spectroscopy (DLTS) ist zerstörungsfrei und könnte prinzipiell genutzt werden. Diese Methode benötigt allerdings einen direkten Zugang zu den Kontakten der Elektroden des Detektors und daher einen speziellen Kryostaten. Eine Kapazitäts-Spannungs Messung (CV) nutzt die elektrische Kapazität des Detektors bei unterschiedlichen Spannungen. Diese Methode ist zerstörungsfrei und sensitiver als die Röntgenfluoreszenz [15]. Um sie anwenden zu können, muss die Kapazität des Detektors in Abhängigkeit von der angelegten Sperrspannung gemessen werden. Eine Messung der Kapazität sollte mit Hilfe des in den Kryostaten eingebauten elektrischen Pulsers möglich sein. Entsprechende Messungen wurden im Rahmen dieser Diplomarbeit entwickelt und verglichen.

2 Physikalische Eigenschaften von HPGe–Detektoren

Um die Untersuchungen bezüglich der Verunreinigungskonzentration eines Ge-Detektors nachvollziehen zu können, wird zu Beginn dieses Kapitels ein Einblick in die Physik und in die Funktionsweise der verwendeten HPGe-Detektoren gegeben.

2.1 Ge-Halbleiterdetektoren

Germanium gehört, wie auch Silizium, zu den Halbleitern. Sie sind Elemente der IV Hauptgruppe des Periodensystems und besitzen vier Valenzelektronen. Halbleiter zeichnen sich durch die Eigenschaft aus, unter bestimmten Umständen den elektrischen Strom gut zu leiten, unter anderen Umständen hingegen schlecht. Dies lässt sich mit Hilfe des sogenannten Bändermodells relativ einfach darstellen. Für die Leitung des elektrischen Stromes benötigt man freie Ladungsträger in Form von Elektronen. Das periodische Gitter eines Halbleiterkristalls erzeugt sogenannte Energiebänder, welche die möglichen Energien für die Hüllenelektronen der Gitteratome festlegen. Diese Bänder können durch verbotene Bereiche getrennt sein. Abbildung 2.1 ist eine vereinfachte Darstellung dieses Sachverhaltes. Sie zeigt die Situation für einen Halbleiter und einen Isolator. Die Bandlücke eines Halbleiters ist gegenüber der eines Isolators klein. Das untere Band bezeichnet man als Valenzband. Im Fall von Germanium befinden sich in ihm die Elektronen, welche die kovalente Bindung der einzelnen Atome im Kristall erzeugen. Das nächst höhere Band bezeichnet man als Leitungsband. In ihm sind freie Elektronen, welche den elektrischen Strom leiten können. Ohne jegliche thermische Anregung, wäre das Valenzband sowohl im Isolator als auch im Halbleiter voll besetzt und das Leitungsband leer. Weder Isolator noch Halbleiter wären in diesem Fall leitend.

Durch thermische Anregung kann ein Elektron des Halbleiters genug Energie aufnehmen um aus dem Valenzband in das Leitungsband aufzusteigen. Dabei hinterlässt das Elektron einen freien Platz im Valenzband, den man als Loch bezeichnet. In einem elektrischen Feld über den Halbleiter läuft das Elektron gegen dieses zur Anode und das Loch bewegt sich in Richtung des elektrischen Feldes zur Kathode. Sowohl das Elektron als auch das Loch tragen zur Leitfähigkeit des Halbleiters bei. Die Wahrscheinlichkeit für das Erzeugen eines solchen Elektron–Loch–Paares durch thermische Anregung pro Zeiteinheit ist gegeben durch

$$p(T) = CT^{\frac{3}{2}}e^{\left(-\frac{E_g}{2k_BT}\right)} \tag{2.1}$$

wobei, T die absolute Temperatur ist, E_q die Breite der Bandlücke zwischen Valenz- und

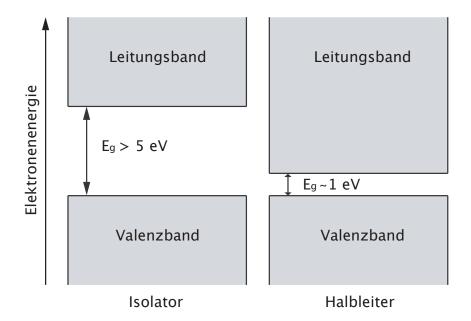


Abbildung 2.1: Bandstruktur eines Isolators und eines Halbleiters

Leitungsband, k_B die Boltzmannkonstante¹ und C eine materialspezifische Proportionalitätskonstante. Der für einen Detektor wichtige Prozess zur Erzeugung von Elektronen-Loch-Paaren ist die Ionisierung durch geladene sich im Halbleiter bewegende Teilchen. Im Falle von Gamma-Detektion sind dies energetische Elektronen und Positronen nach der Wechselwirkung der Gammaquanten mit dem Ge-Material.

Die Bewegung der Elektronen-Loch-Paare in einem elektrischen Feld wurden in [12, 13] für den Fall eines HPGe-Detektor ausführlich beschrieben und untersucht.

2.1.1 Halbleitertypen

Einen Halbleiter frei von jeglichen Verunreinigungen bezeichnet man als intrinsisch. In einem intrinsischen Halbleiter ist die Anzahl der Elektronen gleich der Anzahl der Löcher. Die Konzentration der Ladungsträger hängt bei gegebener Temperatur nur von der Breite der Bandlücke ab. Heutige HPGe-Detektoren haben eine Verunreinigungskonzentration von ungefähr 10^{10} Fremdatomen pro cm³. Je nachdem, ob die Fremdatome aus der V oder der III Hauptgruppe des Periodensystems der Elemente stammen, stellen sie ein quasi freies Elektron oder ein freies Loch zur Verfügung. Entsprechend unterscheidet man n-Typ-Halbleiter und p-Typ-Halbleiter. Der n-Typ hebt sehr einfach ein negativ geladenes Elektron, welches keine kovalente Bindung mit einem Nachbaratom hat, aus dem Valenzband in das Leitungsband. Die entsprechenden Atome bezeichnet man als Donatoren. Die Konzentration der Verunreinigung als N_d . Der p-Typ stellt durch das

 $^{^{1}}k_{B} = 8,617343 \times 10^{-5} \text{ eV K}^{-1}[16]$

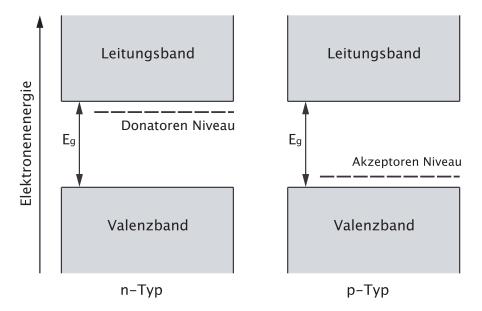


Abbildung 2.2: Änderung der Bandstruktur für einen n-Typ- und p-Typ-Halbleiter

Fehlen einer kovalenten Bindung mit einem Nachbaratom einem Elektron einen Platz im Gitter zur Verfügung. Entsprechend nennt man diese Atome Akzeptoren. Das Elektron eines Akzeptors ist schwächer gebunden als die Elektronen der Atome des Halbleiters und kann leichter in das Leitungsband gehoben werden. Die Konzentration der Verunreinigung mit Akzeptoren bezeichnet man mit N_a . Abbildung 2.2 stellt die Reduzierung der Bandlücke für beide Typen schematisch dar.

In beiden Fällen wird die Konzentration der Ladungsträger bei niedrigeren Temperaturen proportional zur Konzentration der Verunreinigung sein. Die exponentielle Abhängigkeit der Ladungsträgerkonzentration in Gleichung (2.1) ist bei den kleinen Bandlücken der Donatoren und Akzeptoren schwächer ausgeprägt. Bei einem n-Typ-Halbleiter wird die Leitung des elektrischen Stromes primär durch Elektronen realisiert. In diesem Fall sind die Elektronen die sogenannten Majoritätsladungsträger, die Löcher die sogenannten Minoritätsladungsträger. Bei einem p-Typ ist die Situation umgekehrt. Es stehen wesentlich mehr Löcher zur Verfügung, sie sind somit die Majoritätsladungsträger, die Elektronen die Minoritätsladungsträger. Bei beiden Typen gilt in der Summe aller Elektronen und Löcher immer die Ladungsneutralität. Die Gesamtladung ist somit Null.

2.1.2 pn-Übergang

Einen Übergang zwischen einem n- und einem p-Typ-Halbleiter bezeichnet man als pn-Übergang. Bei den AGATA-Detektoren handelt es sich zum Beispiel um n-Typ-Kristalle, bei welchem Bor zur Kontaktierung implantiert wurde. Diese Bor Schicht stellt zusammen mit dem restlichen Kristall einen pn-Übergang dar.

In der n-Typ-Region befinden sich zunächst wesentlich mehr Elektronen als in der p-

Typ-Region. Am Übergang zwischen p- und n-Typ ist die Änderung der Elektronenkonzentration sehr hoch. Die Elektronen werden von der n-Typ-Region in die p-Typ-Region abwandern und dort sehr schnell freie Löcher besetzen. Die gleiche Argumentation gilt auch für die Lochseite, nur das hier die Löcher abwandern. Die Ladungsneutralität ist nun nicht mehr gegeben, auf der n-Seite bildet sich eine positive und auf der p-Seite eine negative Ladung heraus, das entstandene Feld verhindert weitere Diffusion von Ladungsträgern. Der Zusammenhang zwischen Potentialdifferenz und elektrischem Feld ist durch die Poissongleichung gegeben.

$$\nabla^2 \varphi = -\frac{\rho}{\epsilon} \tag{2.2}$$

Wobei ϵ die Dieelektrizitätskonstante des Materials² ist. ρ ist die Raumladungsdichte. Sie ist gegeben durch

$$\rho(\vec{r}) = e(p - n + N_d^+ - N_a^-) \tag{2.3}$$

mit der Elementarladung e, der Anzahl der Löcher im Valenzband p, der Elektronen im Leitungsband n, der ionisierten Akzeptoren N_a^- und der ionisierten Donatoren N_d^+ . Bei Zimmertemperatur gilt im Allgemeinen $N_a^- = N_a$ und $N_d^+ = N_d$, da sämtliche Donatoren ionisiert bzw. alle Akzeptoren durch Elektronen besetzt sind. Das elektrische Feld kann durch folgende Gleichung bestimmt werden.

$$\vec{E} = -\nabla \varphi \tag{2.4}$$

Die Zone, über welche sich das elektrische Feld erstreckt, wird als Verarmungszone bezeichnet. Alle in ihr erzeugten Ladungsträger wandern entlang des elektrischen Feldes aus der Verarmungszone hinaus, somit ist sie praktisch frei von mobilen Ladungsträgern. Sie entspricht dem aktiven Material des Detektors. Dies ist der Bereich, in dem die von Strahlung deponierte Energie nachgewiesen werden kann.

2.1.3 Hochspannung in Sperrrichtung

Die Spannung über dem pn-Übergang beträgt nur wenige Volt und entsprechend ist die Verarmungszone sehr klein. Es gibt zwei Möglichkeiten eine externe Spannung an den Übergang anzulegen. Eine positive Spannung an der p-Seite wird Elektronen aus der n-Seite ziehen und Löcher aus der p-Seite drängen. Dies sind jeweils die Majoritätsladungsträger. Der Strom wird entsprechend gut geleitet. Legt man hingegen eine positive Spannung an die n-Seite an, so wird die natürliche Spannung zwischen den beiden Seiten verstärkt und die Minoritätsladungsträger müssen den Strom leiten. Der pn-Übergang ist eine Diode, welche in Durchlass- oder Sperrrichtung betrieben werden kann.

Für unsere Untersuchung sind die Eigenschaften des in Sperrrichtung betriebenen pn-Übergangs sehr wichtig und diese sollen hier genauer untersucht werden. Für ein grundlegendes Verständnis genügt der Fall einer einfachen Stufenverteilung der Ladungsträger $\rho(x)$ in einer Dimension. Es gelte

$$\rho(x) = \begin{cases} -eN_A & (-a < x \le 0) \\ eN_D & (0 \le x < b) \end{cases}$$
 (2.5)

²Im Falle von Germanium ist $\epsilon = \epsilon_0 \cdot 16[17]$

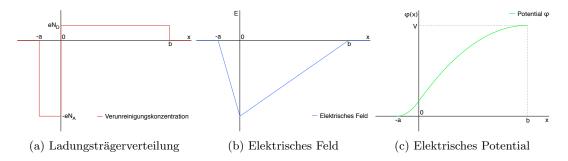


Abbildung 2.3: Einfache Stufenverteilung der Ladungsträger (a), resultierendes elektrisches Feld (b) und elektrisches Potential (c)

wobei sich die p-Seite auf der negativen und die n-Seite auf der positiven Seite befindet. Diese Ladungsträgerverteilung ist in Abbildung 2.3a dargestellt.

Die Gesamtladung muss Null sein, da weder Elektronen noch Löcher zu dem System hinzugefügt worden sind. Es gilt $N_D b = N_A a$. Die Poissongleichung (2.2) nimmt folgende Gestalt an.

$$\frac{d^2\varphi}{dx^2} = \begin{cases}
+\frac{eN_A}{\epsilon} & (-a < x \le 0) \\
-\frac{eN_D}{\epsilon} & (0 \le x < b)
\end{cases}$$
(2.6)

Integriert man diese Gleichungen und nutzt, dass das elektrische Feld an den Rändern der Verteilung (also bei -a und b) Null sein muss, so bekommt man folgende Beziehung für das elektrische Feld.

$$\frac{d\varphi}{dx} = \begin{cases} +\frac{eN_A}{\epsilon}(x+a) & (-a < x \le 0) \\ -\frac{eN_D}{\epsilon}(x-b) & (0 \le x < b) \end{cases}$$
 (2.7)

Das so bestimmte Feld ist in Abbildung 2.3b dargestellt. An den Punkten -a und b ist das elektrische Feld Null, da hier keine Kraft auf die freien Ladungsträger wirkt. Wäre dies nicht der Fall, so würde sich die Verarmungszone weiter ausdehnen. Nach einer weiteren Integration erhalten wir $\varphi(x)$ und nutzen hierzu die Randbedingungen $\varphi(-a) = 0$ und $\varphi(b) = V$.

$$\varphi(x) = \begin{cases} +\frac{eN_A}{2\epsilon}(x+a)^2 & (-a < x \le 0) \\ -\frac{eN_D}{2\epsilon}(x-b)^2 + V & (0 \le x < b) \end{cases}$$
 (2.8)

Beide Lösungen müssen wegen der Stetigkeit des Potentials bei x=0 identisch sein. Mit $N_Db=N_Aa$ ergibt sich

$$V - \frac{eN_D}{2\epsilon}b^2 = \frac{eN_D}{2\epsilon}a^2$$

$$N_Db^2 + N_Aa^2 = \frac{2\epsilon V}{e}$$

$$b(b+a) = \frac{2\epsilon V}{eN_D}$$
(2.9)

Der Verlauf des elektrischen Potentials ist in Abbildung 2.3c dargestellt. Im Allgemeinen, wie auch im Fall der AGATA-Kristalle, ist |a| sehr klein und die Konzentration N_A im Vergleich zu N_D sehr groß. Nehmen wir $s=b+a\simeq b$ an, so ergibt sich für die Breite der Verarmungszone der Ausdruck

$$s \simeq \sqrt{\frac{2\epsilon V}{eN_D}} \tag{2.10}$$

Wegen der festen Ladungsträger auf beiden Seiten des Übergangs verhält sich dieser wie ein Kondensator mit einer Kapazität. In unserem oberen Beispiel ergäbe sich eine Kapazität von

$$C = \frac{\epsilon}{s} \simeq \sqrt{\frac{e\epsilon N_D}{2V}} \tag{2.11}$$

für eine Einheitsfläche.

2.2 CV-Messungen

Kapazität ist definiert als die Ladung, die nötig ist, um das elektrische Potential eines Körpers um eine Einheit zu erhöhen. Ist die Ladung in Coulomb und die Spannung in Volt angegeben, so ist die Einheit der Kapazität Farad.

2.2.1 Planare Diode

Für einen gewöhnlichen Plattenkondensator gilt aufgrund des festen Abstandes s zwischen den Platten

$$C = \frac{dQ}{dV} = \frac{Q}{V} = \frac{A\epsilon}{s} \tag{2.12}$$

Für die Verarmungszone eines planaren pn-Übergangs mit der Oberfläche A gilt ebenfalls

$$C = \frac{dQ}{dV} = \frac{A\epsilon}{s} \tag{2.13}$$

Nur das hier s = s(V) gilt und damit

$$C(V_0) = \frac{dQ}{dV}\Big|_{V=V_0} \neq \frac{Q}{V_0}$$
 (2.14)

für eine bestimmte Spannung V_0 . Erhöht man die Spannung in Sperrrichtung, so vergrössert sich die Verarmungszone. Die hinzugefügte Ladung kann man durch das Produkt aus der Änderung des Abstands, der lokalen Verunreinigungskonzentration N_d und der Elementarladung e beschreiben.

$$\frac{dQ}{dV} = eN_D A \frac{ds}{dV} \tag{2.15}$$

Stellt man Gleichung (2.13) nach s um und leitet diesen Ausdruck nach V ab, so gilt mit C=C(V)

$$\frac{ds}{dV} = -\frac{\epsilon A}{C^2} \frac{dC}{dV} \tag{2.16}$$

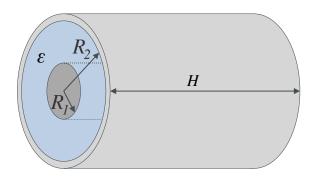


Abbildung 2.4: Geometrie eines Zylinderkondensators

Einsetzen in (2.15) und Umstellen nach N_D ergibt schließlich

$$N_D = -\frac{C^3}{\epsilon e A^2} \left(\frac{dC}{dV}\right)^{-1} \tag{2.17}$$

2.2.2 Zylindersymmetrische Diode

Diese Formel gilt für eine planare Diode. Eine gute Näherung für die hinteren Ringe der AGATA-Detektoren ist ein Zylinder. Für diesen Fall müssen die obigen Gleichungen etwas an diese Geometrie angepasst werden, das Prinzip bleibt jedoch bestehen. Die Kapazität eines Zylinderkondensators ist durch

$$C = \frac{2\pi\epsilon H}{\ln\frac{R_2}{R_1}} \tag{2.18}$$

gegeben. Hierbei ist H die Höhe des Zylinders, R_2 der Aussen– und R_1 der Innenradius wie in Abbildung 2.4. Das Volumen $V_{\text{Zyl.}}$ eines Hohlzylinders ist gegeben durch

$$V_{\text{Zyl.}} = \pi H(R_2^2 - R_1^2) \tag{2.19}$$

Der Zusammenhang zwischen Kapazität und Verunreinigungskonzentration ist durch

$$C = \frac{dQ}{dV} = eN_D(R)\frac{dV_{\text{Zyl.}}}{dV}\bigg|_{R=R_1}$$
(2.20)

gegeben. Prinzipiell ist N_D ortsabhängig. Aufgrund der Segmentierung der AGATA–Detektoren kann man den Ort zumindest grob bestimmen. Für unterschiedliche Kapazitätsmessungen können wir eine Aussage für ein Segment bezüglich der radialen Komponente machen. Somit ist $N_D(\vec{r}) \equiv N_D(R)$. Betrachten wir die Volumenänderung, so wissen wir, dass lediglich R_1 mit der Spannung variiert.

$$\frac{dV_{\text{Zyl.}}}{dV} = -\pi H \frac{dR_1^2}{dV} \tag{2.21}$$

2 Physikalische Eigenschaften von HPGe-Detektoren

Stellt man die Formel der Kapazität eines Zylinderkondensators nach \mathbb{R}^2_1 um, so erhalten wir

$$R_1^2 = R_2^2 e^{-\frac{4\pi\epsilon H}{C}} \tag{2.22}$$

In diesem Ausdruck wird sich nur die Kapazität ${\cal C}$ mit der Spannung ändern.

$$\frac{dR_1^2}{dV} = R_2^2 \frac{4\pi\epsilon H}{C^2} e^{-\frac{4\pi\epsilon H}{C}} \frac{dC}{dV}$$
(2.23)

Setzen wir (2.23) in (2.21) ein, ersetzen $\frac{dV_{\rm Zyl.}}{dV}$ in (2.20) und stellen nach N_D um, so bekommen wir einen Ausdruck für die Verunreinigungskonzentration in einer zylinderförmigen Diode.

$$N_D(R_1) = -\frac{C^3 e^{\frac{4\pi\epsilon H}{C}}}{4e\pi^2 H^2 \epsilon R_2^2 \frac{dC}{dV}}$$
 (2.24)

Nicht bei allen Segmenten des Detektors ist die Näherung mit einer Zylindersymmetrie vertretbar. Daher müssen numerische Berechnungen bzw. Computersimulationen gemacht werden, um die Geometrie dieser Segmente zu berücksichtigen.

3 Kapazitätsmessungen

Um eine CV-Analyse durchführen zu können, muss die Kapazität des Detektors in Abhängigkeit von der angelegten Sperrspannung gemessen werden. In diesem Kapitel wird zunächst ein einfaches Modell eines segmentierten HPGe-Detektors vorgestellt und die jeweiligen Komponenten untersucht. Dann werden zwei Messverfahren vorgestellt und deren Resultate verglichen.

3.1 Ersatzschaltung eines AGATA-Detektors

3.1.1 Aufbau eines AGATA-Detektors

Ein AGATA-Detektor ist ein hochreiner semi-hexagonal kegelförmiger Germanium-Kristall, der hermetisch versiegelt in einer Aluminiumkanne sitzt. Die Kristalle sind 90 mm hoch und haben einen maximalen Durchmesser von 80 mm. In die Mitte der breiten Seite der Kegelform wurde ein 5 mm breites und 77 mm tiefes Loch gebohrt. Auf die Wand dieses Loches ist Lithium zur Kontaktierung aufgebracht. Diese Lithiumschicht stellt die Hauptelektrode des Detektors dar. Auf den Mantel und die Unterseite der Kegelform wurde eine Borschicht aufgebracht und mit einem lithographischen Verfahren 36-fach segmentiert. Diese segmentierten Flächen bilden die Segmentelektroden. Die Kontakte der Haupt- und der Segmentelektroden sind aus der Aluminiumkanne geführt. Die Rückseite des Detektors, also die breite Seite der Kegelform, ist passiviert. Das bedeutet, dass die oberste Schicht elektrisch passiv ist und den elektrischen Strom auch unter hohen Spannungen nicht leitet. Erreicht wird dies durch Aufbringen einer amorphen Germaniumschicht. Die Ausdehnung dieser Schicht wurde gemessen [3]. Sie reicht zwischen 1 bis 7 mm in die Segmente des sechsten Ringes.

Es existieren eine symmetrische und drei asymmetrische Geometrien. Die drei asymmetrischen Geometrien sind in Abbildung 3.1 dargestellt. Die Abmessungen und die Nummerierung der Segmente sind in Abbildung 3.2 dargestellt.

Die Größe der Oberflächen aller Segmentelektroden und Geometrien wurden mit Hilfe der jeweiligen technischen Zeichnung bestimmt. Alle Werte sind im Anhang A auf Seite 87 zusammengefasst.

Die gekapselten Kristalle werden für den eigentlichen Betrieb in einen Kryostaten eingebaut. Die Anforderungen an diesen sind hoch. Die Detektoren werden nahe über 77 K, dem Siedepunkt von Stickstoff, unter einem Vakuum von höchstens 10^{-6} mBar betrieben. Prinzipiell unterscheidet man den warmen und den kalten Bereich des Kryostaten. Im kalten Teil sitzen die Detektoren sowie die erste Verstärkungsstufe der Vorverstärker. Der kalte Bereich des Kryostaten ist evakuiert. Über vakuumfeste Durchführungen gelangen die Signalleitungen aus dem kalten Bereich in den warmen Teil des Kryostaten. Dieser

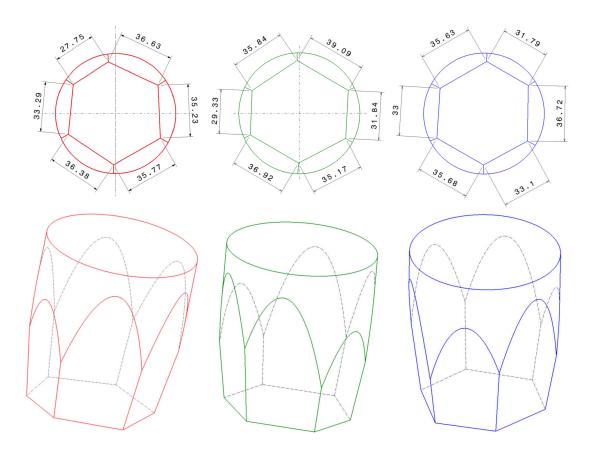


Abbildung 3.1: Die drei asymmetrischen Geometrien der AGATA–Detektoren: A–Typ (rot), B–Typ (grün) und C–Typ (blau)

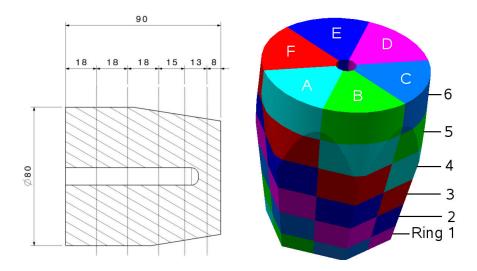


Abbildung 3.2: Horizontale Aufteilung des Ge-Kristalls in Segmente und deren Notation

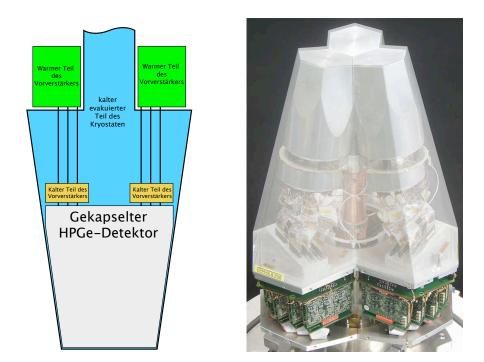


Abbildung 3.3: Schematischer Aufbau eines Testkryostaten und Foto eines AGATA-Tripel-Kryostaten mit transparenter Endkappe

Teil ist nicht von der Umgebung getrennt. Hier sitzt die restliche Vorverstärkerelektronik. Eine schematische Darstellung des Testkryostaten ist in Abbildung 3.3 dargestellt. Eine ausführliche Beschreibung der Testkryostaten ist in [18] zu finden. Im endgültigen Aufbau des AGATA-Spektrometers sind jeweils drei asymmetrische Detektoren in einem Tripel-Kryostaten zusammengefasst [19].

3.1.2 Modell

Ein einfaches Modell eines AGATA-Kristalls besteht aus 36 Kondensatoren mit jeweils 36 parallel und seriell geschalteten Widerständen. Die Kondensatoren stehen stellvertretend für die Verarmungszone zwischen der Hauptelektrode und den Segmentelektroden. Alle Kondensatoren sind somit parallel geschaltet, ihre einfache Summe ergibt die Kapazität des kompletten Detektors. Die Kapazitäten der Kondensatoren werden sich bei Erhöhung der Sperrspannung verringern, da sich die Verarmungszonen weiter ausdehnen. Um bei niedriger oder keiner Sperrspannung Ladungen auf die einzelnen Kondensatoren zu laden, müssen diese von der Hauptelektrode zu der Verarmungszone durch den Detektor wandern. Dieser Weg wird durch in Serie geschaltete Widerstände im Modell beschrieben. Abhängig von der Ausdehnung der Verarmungszone und der angelegten Sperrspannung wird ein Leckstrom von Hauptelektrode zu den Segmentelektroden fließen. Dies wird in dem Modell durch die zu den Kondensatoren parallel geschalteten Widerständen berücksichtigt. In Abbildung 3.4 ist eine Skizze der Modellschaltung dargestellt.

Die Kapazitäten lassen sich durch einfache Berechnungen abschätzen. Nähern wir die Gestalt des Detektors durch einen einfachen Zylinder an und betrachten den Fall, dass eine geringe Sperrspannung angelegt ist. Die Kapazität eines Zylinderkondensators ist durch

$$C = 2\pi \epsilon \frac{H}{\ln \frac{R_2}{R_1}} \tag{3.1}$$

mit der Höhe H, Außenradius R_2 und R_1 als Innenradius des Zylinders gegeben. Stimmen Innen- und Außenradius nahezu überein, so kann man folgende Näherung durchführen.

$$C = 2\pi\epsilon \frac{H}{\ln\frac{R_2}{R_1}} \simeq 2\pi\epsilon \frac{HR_1}{R_2 - R_1} \simeq \epsilon \frac{A}{d}$$
 (3.2)

mit A als Oberfläche des Kristalls und d als die Dicke der Verarmungszone. Man erkennt, dass in diesem Fall die Kapazität lediglich von der Oberfläche des Detektors abhängt. Die Flächeninhalte der Oberflächen des Detektors sind im Anhang A einzusehen. Geht man von 1 mm als Dicke der Verarmungszone aus, so erhält man eine Kapazität von $3,5\,\mathrm{nF}$ für die Oberfläche der asymmetrischen Geometrie B (grün).

Für einen Detektor unter Hochspannung kann man die obige Näherung nicht mehr begründen. Allerdings kann man eine einfache untere Abschätzung machen, indem man einen Zylinderkondensator mit Radius $R_2 = 40 \,\mathrm{mm}, \, R_1 = 5 \,\mathrm{mm}$ und $H = 90 \,\mathrm{mm}$ berechnet. Dies ergibt einen unteren Wert von 38,6 pF für den gesamten Detektor.

Die Werte der seriellen Widerstände kann man ebenfalls abschätzten. Die Leitfähigkeit σ eines Halbleiters ist durch das Produkt aus Ladungsträgerdichte n, Beweglichkeit der

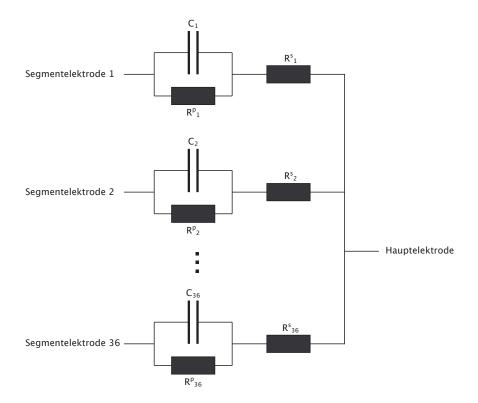


Abbildung 3.4: Skizze des Detektormodells

Ladungsträger μ und Ladung e dergleichen gegeben.

$$\sigma = en\mu \tag{3.3}$$

Trotz einer Temperatur von 77 K nehmen wir aufgrund der geringen Ionisierungsenergie der Donatoren 1 an, dass alle Elektronen der Donatoren im Leitungsband sitzen. Daher setzen wir die Ladungsträgeranzahl gleich der Verunreinigungskonzentration. Die Beweglichkeit der Elektronen beträgt für geringe Feldstärken $4\frac{\rm m^2}{\rm Vs}$ [13] und die Elektronenladung ist $0,16\times10^{-18}\,{\rm C}$ [16]. Aus der Leitfähigkeit berechnet sich der Widerstand für eine zylindersymmetrische Geometrie über die Formel

$$R = \int_{R_1}^{R_2} \frac{1}{\sigma A} dr = \int_{R_1}^{R_2} \frac{1}{2\sigma\pi rh} dr = \frac{\ln\frac{R_2}{R_1}}{2\sigma\pi h}$$
(3.4)

Gehen wir von einer Höhe von 90 mm, einem Innenradius von 5 mm, einem Außenradius von 40 mm und einer Verunreinigungskonzentration von 10^{16} Atomen pro Kubikmeter aus, so ergibt sich ein Wert von 575Ω .

Der Hersteller liefert mit seinen Beschreibungen der Detektoren Messungen der Kapazität und des seriellen Widerstandes für unterschiedliche Spannungen. Diese Messungen sind für die hier relevanten Detektoren in den Tabellen B.1 und B.2 in Anhang B zusammengefasst. Die Werte stimmen in Ihren Größenordnungen mit den hier gemachten Abschätzungen überein.

Die parallelen Widerstände sind relativ hoch und werden experimentell bestimmt und analysiert.

3.1.3 Kennlinie

Um Aussagen über die parallelen Widerstände machen zu können, wurde der symmetrische AGATA-Detektor S002 vermessen. Der Strom von Hauptelektrode zu allen Segmentelektroden ist für unterschiedliche Spannungen bestimmt worden.

Der Detektor wurde in den symmetrischen Tripel-Kryostaten (STC) eingebaut und mit flüssigen Stickstoff gekühlt. Im Gegensatz zu einem normalen Aufbau wurden keinerlei elektronische Bauteile zur Signalverstärkung, weder im kalten noch im warmen Teil des Kryostaten, installiert. Sämtliche Segmentelektroden wurden direkt über Drähte und eine Va-

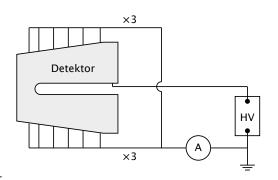


Abbildung 3.5: Schematische Darstellung des Aufbaus zur Messung der Kennlinie des Detektors

kuumdurchführung in den warmen Teil des Kryostaten gelegt. Dort wurden alle Segmentelektroden mit speziellen Micromatch-Adaptern über gelötete Silberdrähte zusammengeschlossen. Die Hauptelektrode wurde direkt an die Hochspannungsleitung des Kryostaten gelötet, wodurch sie ohne Hochspannungsfilter an die Spannungsversorgung angeschlossen war. Zwei Spannungsversorgungen wurden genutzt, eine Ortec 710 und ein Eigenbau,

 $^{^1\}mathrm{Beispielsweise}$ ist die Ionisierungsenergie des 1
s Elektrons von Lithium in Germanium $9,89\,\mathrm{meV}[20]$

der im Anhang C.1 auf Seite 91 beschrieben ist. Zur Messung des Stromes wurde ein Keithley 486 Picoamperemeter mit einem triaxialen Kabel zwischen kurzgeschlossenen Segmentelektroden und der Masse der Hochspannungsversorgung geschaltet. In Abbildung 3.5 ist eine schematische Darstellung des Aufbaus dargestellt. Das Amperemeter wird mit Hilfe eines mit LabView² entwickelten Computerprogramms ausgelesen und die Zeit der einzelnen Abfragen mit Hilfe der Echtzeit-Bibliothek des LabView-Systems protokolliert.

Die erste Messung umfasst Spannungen von 0 bis 70 V in 10 V Schritten, die mit dem Ortec-Modul erzeugt wurden. Sobald man die Spannung erhöht, fließen Ladungsträger auf den Detektor, äquivalent zum Beladen eines Kondensators. Entsprechend fließen die Ladungsträger von dem Detektor ab, wenn man die Spannung senkt. Um den konstanten Leckstrom über den Kristall zu messen, muss man einige Sekunden warten, bis der Kondensator vollständig geladen bzw. entladen ist. Ein Graph der Messung ist in Abbildung 3.6 dargestellt. Die einzelnen Spitzen des Kurvenverlaufs enstehen durch Auf- bzw. Entladen des Kondensators. Die rote Linie kennzeichnet den Verlauf des Leckstromes. Weitere Messungen in dem Bereich 0 bis 10 V und 0 bis 1 V wurden mit dem gleichen Verfahren durchgeführt. In der Analyse musste ein über die Zeit nicht konstanter Versatz

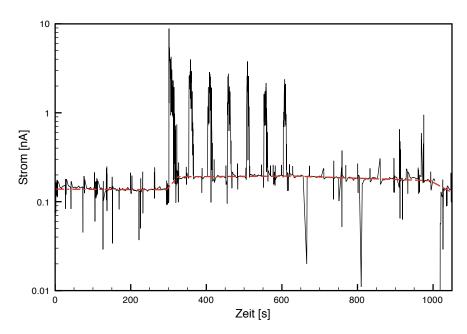


Abbildung 3.6: Messung des Stromes abhängig von der angelegten Spannung erzeugt mit dem Ortec–Spannungsmodul im Bereich von 0 bis 70 V

korrigiert werden. Dazu wurde der mittlere Wert bei 0 V Spannung von den Messungen abgezogen. Eine Zusammenfassung der ermittelten Werte ist in Abbildung 3.7 darge-

²LabView Version 8.6.1

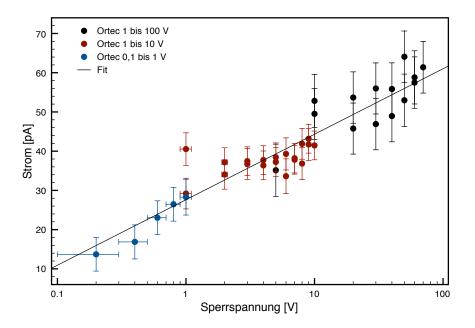


Abbildung 3.7: Leckstrom über den Kristall für unterschiedliche Spannungen erzeugt mit dem Ortec-Spannungsmodul

stellt. An die Messdaten wurde ein Funktion der Form $f(x) = A \ln x + B$ angepasst. Dabei wurde $A = (7, 25 \pm 0, 47) \times 10^{-12}$ und $B = (27, 6 \pm 1, 1) \times 10^{-12}$ bestimmt.

Die Kurve steigt unterhalb von 10 V am stärksten an. Um für diesen Bereich einen besser aufgelösten Verlauf zu messen, wurde eine spezielle Spannungsversorgung genutzt, welche mit Hilfe einer Eichgeraden auf Volt normalisiert wurde. Um die zeitliche Verschiebung des Versatzes der Messwerte besser korrigieren zu können, wurde nach jedem Messpunkt die Spannung auf 0 V zurückgesetzt. In der Analyse ist somit von dem konstanten Leckstrom ein mittlerer Versatz unmittelbar vor und nach dem Messpunkt subtrahiert. In Abbildung 3.8 sind die Daten dieser Messung dargestellt. Man erkennt anhand der sehr kleinen Fehler, dass diese Messung genauere Werte liefert. Auch an diese Messung wurde eine Funktion der Form $f(x) = A \ln x + B$ angepasst, mit $A = (9, 56 \pm 0, 24) \times 10^{-12}$ und $B = 34, 7 \pm 0, 3 \times 10^{-12}$.

Oberhalb von $10\,\mathrm{V}$ beträgt der parallele Widerstand für eine konstante Spannung ungefähr $200\,\mathrm{G}\Omega$ für den gesamten Detektor. Neben diesem Wert ist auch der differentielle Widerstand $r=\frac{dU}{dI}$ interessant. Er beschreibt den Widerstand, den ein auf eine konstante Spannung addiertes Wechselspannungssignal erfährt. Mit Hilfe der ermittelten Werte A und B kann man r(U) bestimmen.

$$r(U) = \frac{dU}{dI}\Big|_{U} = \frac{e^{\frac{I-B}{A}}}{A} = \frac{e^{\frac{A \ln U + B - B}{A}}}{A} = \frac{U}{A}$$
 (3.5)

Dieser lineare Zusammenhang ist für beide Messungen in Abbildung 3.9 dargestellt.

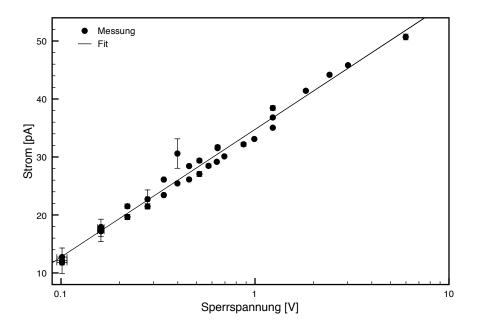


Abbildung 3.8: Leckstrom über den Kristall für unterschiedliche Spannungen mit dem IKP-Eigenbau-Spannungsmodul

Oberhalb von 10 V ist der differentielle Widerstand bereits so hoch, dass auch dieser für unsere Messungen keine Relevanz hat.

3.2 Messungen mit dem Pulser

Dieser Abschnitt befaßt sich mit der Messung der Kapazitäten des Detektormodells mit Hilfe eines Pulsers, der Teil des AGATA-Vorverstärkers ist. Diese Methode hat den Vorteil, dass die Detektoren direkt in den Test- und Tripel-Kryostaten vermessen werden können. Man benötigt weder einen speziellen Kryostaten noch extra Messgeräte. Weiterhin ist man in der Lage, die Kapazität aller Segmente und die des gesamten Detektors gleichzeitig und zu exakt identischen Bedingungen zu vermessen.

3.2.1 Analoge Elektronik

Zunächst werden in diesem Abschnitt die elektronischen Bauteile, die zu dieser Methode benötigt werden und Teil der AGATA-Kryostaten sind, kurz beschrieben. Insbesondere das theoretische Verhalten des Pulsersignals bei unterschiedlichen Eingangskapazitäten ist für uns von fundamentalem Interesse.

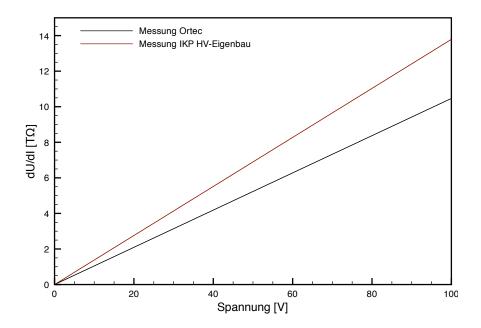


Abbildung 3.9: Differentieller Widerstand in Abhängigkeit von der Spannung

Vorverstärker

Die Vorverstärker der AGATA-Detektoren benötigen neben guten Energie- und Zeiteigenschaften eine schnelle und klare Transferfunktion der Detektorsignale. Dies ist grundlegend für die Pulsformanalyse. Weiterhin müssen die Vorverstärker sehr hohe Zählraten verarbeiten können. Für diesen Zweck wurden in Zusammenarbeit zwischen der Universität zu Köln, der Universität Mailand (Italien) und GANIL (Frankreich) neue Verstärker für die Haupt- und Segmentsignale entwickelt [21, 22]. Sie bestehen aus einem kalten und einem warmen Teil. Der kalte Teil ist in unmittelbarer Nähe zu den Elektroden des Kristalles angebracht. Er besteht aus einem rauscharmen Feldeffekttransistor³ (FET), einem 1 pF Rückkopplungskondensator $C_{\rm FB}$ und einem 1 G Ω Rückkopplungswiderstand $R_{\rm FB}$. Die FETs haben eine optimale Arbeitstemperatur von 130 K, weshalb man sie in den kalten Teil des Detektors gelegt hat. Der warme Teil des Vorverstärkers sitzt direkt neben dem kalten Teil des Detektors. Er besteht aus einem rauscharmen transimpedanten Verstärker, einer Pole–Zero–Stufe, einem differentiellen Ausgabepuffer und einer Fast–Reset–Schaltung.

Der Vorverstärker der Hauptelektrode besitzt einen eingebauten Pulsgenerator. Er wurde entwickelt um die Stabilität, die Linearität und das Auflösungsvermögen der Segmente zu testen. Das Ausgabesignal des Pulsers ist direkt mit der Source des FETs der Hauptelektrode über einen Widerstandsteiler bestehend aus einem $48,5\,\Omega$ Widerstand und einem geerdeten $1,8\,\Omega$ Widerstand verbunden. Das Signal erreicht über das Ge-Material

³Modell BF862

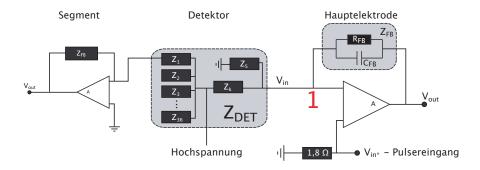


Abbildung 3.10: Ersatzschaltbild der Segmentvorverstärker, des Detektors und des Hauptelektrodenvorverstärkers

alle Kontakte der Segmente des Detektors.

Die Hochspannung wird hinter einem Koppelkondensator C_k von 1 nF angelegt, sodass der Vorverstärker der Hauptelektrode vor der Hochspannung geschützt ist.

Pulser und Kapazität

Der beschriebene Pulser soll genutzt werden, um die Kapazität eines Detektors zu bestimmen. In Abbildung 3.10 ist ein schematisches Ersatzschaltbild für den Vorverstärker der Hauptelektrode, dem Detektor und eines Segmentvorverstärkers dargestellt.

Betrachten wir zunächst die rechte Seite, also den Vorverstärker der Hauptelektrode. In den Verstärker fließt kein Strom und mit der Knotenregel gilt für den Punkt 1 (rot)

$$\frac{V_{\rm in}}{Z_{\rm DET}} = \frac{V_{\rm out} - V_{\rm in}}{Z_{\rm FB}} \tag{3.6}$$

 Z_{DET} ist die Impedanz, welche vor dem Vorverstärker der Hauptelektrode geschaltet ist. Die Spannung V_{out} ist gegeben durch das Prokukt des Verstärkungsfaktors A des Verstärkers und der Differenz zwischen V_{in} und $V_{\text{in}}*$.

$$V_{\text{out}} = A(V_{\text{in}^*} - V_{\text{in}}) \tag{3.7}$$

Ersetzen wir V_{out} in Gleichung (3.6) durch den Ausdruck der letzten Gleichung und stellen ein wenig um, so ergibt sich der Zusammenhang zwischen Pulsersignal V_{in} * und V_{in} , dass an den Detektor weitergegeben wird. Im Vergleich zu den anderen Größen ist A sehr groß. Daher gilt in guter Näherung

$$V_{\rm in} = \frac{1}{1 + \underbrace{\frac{1}{A} + \frac{Z_{\rm FB}}{AZ_{\rm DET}}}_{\simeq 0}} V_{\rm in}^* \simeq V_{\rm in}^*$$
 (3.8)

Setzt man diese Relation in Gleichung (3.6) ein, so ergibt sich

$$V_{\text{out}} = \left(\frac{Z_{\text{FB}}}{Z_{\text{DET}}} + 1\right) V_{\text{in}} \simeq \left(\frac{Z_{\text{FB}}}{Z_{\text{DET}}} + 1\right) V_{\text{in}*}$$
 (3.9)

Der Rückkopplungswiderstand $Z_{\rm FB}$ besteht aus einem Kondensator $C_{\rm FB}=1\,{\rm pF}$ und einem dazu parallelen Widerstand $R_{\rm FB}=1\,{\rm G}\Omega$. Für die für uns relevanten Frequenzen zwischen 100 kHz und 10 MHz ist $R_{\rm FB}$ sehr groß und daher gilt

$$\frac{1}{Z_{\rm FB}} = \frac{1}{R_{\rm FB}} + i\omega C_{\rm FB} \simeq i\omega C_{\rm FB} \tag{3.10}$$

Gehen wir zunächst davon aus, dass

$$Z_{\text{DET}} = \frac{1}{i\omega C_{\text{DET}}} \tag{3.11}$$

gilt. So ergibt sich direkt die Beziehung

$$V_{\text{out}} = \left(\frac{C_{\text{FB}} + C_{\text{DET}}}{C_{\text{FB}}}\right) V_{\text{in}^*} \tag{3.12}$$

die zeigt, dass das Pulsersignal der Hauptelektrode linear abhängig von der Eingangskapazität des Detektors ist. Die Segmentvorverstärker sehen jeweils nur einen Teil der Gesamtkapazität des Detektors, funktionieren aber im Prinzip genau gleich wie der Vorverstärker der Hauptelektrode. Der Strom, der am Punkt 1 (rot) fließt ist

$$I_{\rm IN} = \frac{V_{\rm IN}}{Z_{\rm DET}} \tag{3.13}$$

Hierbei wird - entsprechend der Stromteilerregel - ein Teil über die Streukapazitäten $Z_{\rm S}$ abfliessen, der Rest über den Koppelkondensator $Z_{\rm K}$ und die einzelnen Segmente Z_i . Der Anteil $I_{\rm C}$, der tatsächlich über das Kristall fließt, ist gegeben durch

$$I_{\rm C} = \frac{V_{\rm IN}}{Z_{\rm K} + \left(\sum_{i=1}^{36} \frac{1}{Z_i}\right)^{-1}}$$
(3.14)

Die einzelnen Segmentvorverstärker sehen entsprechend der Stromteilerregel

$$I_{j} = \frac{\left(\sum_{i=1}^{36} \frac{1}{Z_{i}}\right)^{-1}}{Z_{j}} I_{C}$$
(3.15)

Ersetzen wir nun alle Segmentimpedanzen mit den entsprechenden Kapazitäten, so ergibt sich

$$I_{j} = \frac{i\omega C_{j}}{\sum_{i=1}^{36} i\omega C_{i}} I_{C} = \frac{C_{j}}{\sum_{i=1}^{36} C_{i}} I_{C}$$
(3.16)

Das Pulsersignal eines Segmentes ist also direkt proportional zu dem relativen Anteil des Segmentes an der Gesamtkapazität aller Segmente. Aufgrund der Streukapazitäten gibt es einen Unterschied zwischen dem Signal der Hauptelektrode und der Summe aller Segmentsignale. Dieser Unterschied ist allerdings für unterschiedliche Spannungen konstant. Weiterhin muss man entsprechend dem in Abschnitt 3.1.2 entwickelten Modells zusätzlich zu den Koppelkondensator einen Widerstand setzen. Dieser Widerstand wird sich mit der angelegten Spannung ändern und Auswirkungen auf die Messung haben, die es genauer zu untersuchen gilt.

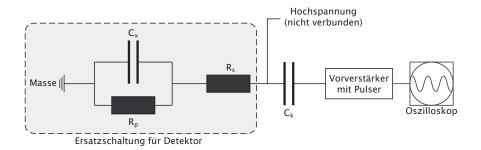


Abbildung 3.11: Ersatzschaltung für einen Detektor bestehend aus einem Widerstand in Reihe R_s , einem parallelen Widerstand R_p und der Detektorkapazität C_x

3.2.2 Test mit bekannten Kapazitäten und Widerständen

Um die lineare Abhängigkeit des Pulsersignals von der Eingangskapazität und die Einflüsse der Widerstände zu überprüfen, wurde eine einfache Ersatzschaltung wie in Abbildung 3.11 genutzt. Die Ersatzschaltung wurde wie ein Detektor in den Testkryostaten⁴ eingebaut. Da die Kapazitäten per Hand ausgewechselt werden mussten, wurde der Kryostat weder evakuiert noch eingekühlt. In einem eingekühlten Kryostaten ist die Kapazität des Koppelkondensators (C_k) circa 20% geringer. Die Amplitude und die Anstiegszeit des Vorverstärkersignals wurden mit einem digitalen Oszilloskop⁵ für unterschiedliche Kapazitäten C_x und Widerstände R_s bestimmt. Sämtliche Messungen sind in Tabelle C.1 im Anhang auf Seite 92 zusammengestellt.

Man muss beachten, dass der Koppelkondensator C_k in Reihe mit der Kapazität C_x der Ersatzschaltung gesetzt ist. Daher sieht der Vorverstärker eine Kapazität C, welche durch die Reihenschaltung von C_k und C_x bestimmt ist.

$$C = \frac{C_x \cdot C_k}{C_x + C_k} \tag{3.17}$$

In Abbildung 3.12 sind die Werte der Kapazität C_x gegen die Amplitude des Vorverstärkersignals aufgetragen. In dem linken Graphen ist die unkorrigierte Messung dargestellt. In dem rechten Graphen die nach Formel (3.17) korrigierte Kapazität C gegen die Amplitude. Man erkennt wie erwartet einen linearen Zusammenhang zwischen Amplitude und korrigierter Kapazität.

Neben der Abhängigkeit der Amplitude von der Kapazität ist auch das Verhalten der Amplitude für unterschiedliche Widerstände interessant. Deshalb wurden Widerstände bis 1000 Ω in Reihe mit dem Kondensator geschaltet. Im linken Teilgraphen der Abbildung 3.12 ist die Amplitude gegen den in Reihe geschalteten Widerstand für eine Kapazität von 780 pF dargestellt. Die Amplitude fällt linear mit steigendem Widerstand. Die prozentualen Abweichungen vom Mittelwert der Amplitude durch die unterschiedlichen Widerstände sind in Abbildung 3.13 zusammengefasst. Die Koeffizienten der Steigung

 $^{^4}$ Testkryostat C4 Seriennummer 10045

⁵LeCroy Wavesurfer 44xs

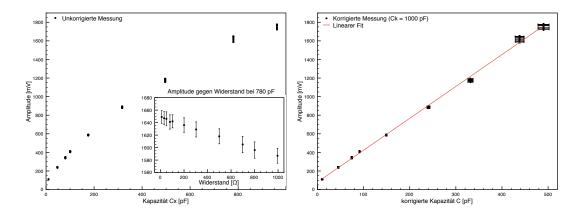


Abbildung 3.12: Abhängigkeit der Amplitude von der Kapazität, links unkorrigierte Kapazität, rechts korrigierte Kapazität



Abbildung 3.13: Prozentuale Abweichung für in Reihe geschaltete Widerstände bis 1000 Ω und Koeffizienten der Steigung der Abhängigkeit der Amplitude vom Widerstand für unterschiedliche Kapazitäten

wurden bestimmt und sind in Abbildung 3.13 für die unterschiedlichen Kapazitäten dargestellt.

Weiterhin wurde für einige Messwerte auch ein Widerstand von 1 G Ω parallel zu den jeweiligen Kondensator geschaltet. Die entsprechenden Messwerte stimmen innerhalb der Fehler überein. Die Ergebnisse sind in Tabelle 3.1 gegenübergestellt. Wie in Abschnitt 3.1.3 dargestellt, ist der Widerstand der Kristalle bei einer Sperrspannung ab 10 V größer als 200 G Ω . Somit haben die parallelen Widerstände C_p des Detektormodells keinen Einfluss auf die Messungen mit den Pulser.

Die lineare Beziehung zwischen Amplitude und Kapazität wurde durch die Vermessung der Ersatzschaltung bestätigt. Der Fehler, welcher aufgrund eines zusätzlichen Widerstandes in Reihe mit der Kapazität des Detektors auftritt, ist im Allgemeinen geringer als 5 %.

3.2.3 Messungen

Der Messaufbau wurde während aller Messreihen nicht wesentlich verändert und wird hier kurz beschrieben. Für nahezu alle Messungen wurde der jeweilige Kristall in den Testkryostaten⁶ analog zu den Customer Acceptance Tests [18] und Crosstalk-Messungen [23] eingebaut. Die Messungen der Detektoren A003 und B003 wurden im AGATA-Tripel-Kryostaten 2 (ATC2) durchgeführt. Die differentiellen Signale der Segment-Vorverstärker wurden über MDR-Kabel⁷ an Konverter angeschlossen. Sie konvertieren die differentiellen Signale in sogenannte Single-Ended Signale, welche von den digitalen Vielkanalanalysatoren⁸ verarbeitet werden können. Das Signal der Hauptelektrode wird über eine spezielle Konverterbox an die digitale Elektronik weitergereicht. Die digitalen Module werden alle von einer zentralen Uhr getaktet, welche sternförmig via Firewire⁹ an die Module verteilt wird. Das Signal der Hauptelektrode löst die Datenaufnahme aus und alle 37 Kanäle des Detektors werden simultan verarbeitet. Die jeweiligen Energien werden in einem Vielkanalpuffer abgespeichert, welcher am Ende der jeweiligen Messreihe von dem Mess-PC ausgelesen wird. Die an den Detektor angelegte Sperrspannung wird mit einer Hochspannungsversorgung erzeugt. Im Fall des Detektors C005 wurde ein Ortec-HV-Modul¹⁰ genutzt. In allen anderen Messreihen wurde ein Iseg-HV-Modul¹¹ eingesetzt. Der Pulser des Hauptelektroden-Vorverstärkers wird über die Konverterbox des Vorverstärkers gesteuert. Neben Amplitude und Dämpfung kann auch die Signalform angepasst werden. In allen Messreihen wurde ein Rechtecksignal genutzt.

Bevor mit den eigentlichen Messungen begonnen wurde, mussten die digitalen Module zunächst eingestellt werden. Um die Daten später einfach vergleichen zu können, werden die Verstärkungen der digitalen Module mit Hilfe einer ⁶⁰Co-Quelle aufeinander abgestimmt. Durch diese Maßnahme erspart man sich spätere Normalisierungen der Verstär-

⁶Testkryostat C4 Seriennummer 10045

⁷mini-D ribbon (MDR) Stecker und Kabel, werden im Zusammenhang mit digitaler Videoübertragung genutzt

 $^{^8\}mathrm{XIA}$ - Digital Gammas Finder Rev. D

 $^{^9\}mathrm{IEEE}\text{--}1394$

¹⁰Ortec 660

 $^{^{11}}$ Iseg SHQ126L

C_x [pF]	$R_s [\Omega]$	Amplitude mit 1 G Ω [mV]	Amplitude ohne 1 G Ω [mV]
961,5	499,1	$1766,3 \pm 11,7$	1763.8 ± 15.7
961,5	995	1727 ± 12	1722 ± 12
780	10,2	$1649 \pm 10,3$	$1649 \pm 10{,}3$
780	499,1	1616 ± 13	1618 ± 12
780	995	1587 ± 13	1587 ± 12
496,2	10,2	1193 ± 5	$1191,9 \pm 4,5$
496,2	499,1	1169.8 ± 5.3	$1170,2 \pm 5,4$
496,2	995	$1158,1 \pm 4,7$	$1156,1 \pm 5,3$
316,9	10,2	$895,6 \pm 5,3$	894.7 ± 4.4
316,9	499,1	884.2 ± 4.6	$885,3 \pm 4,9$
316,9	995	877.1 ± 5.9	$875,9 \pm 5,1$
175,6	10,2	$591,4 \pm 3,4$	$591 \pm 3,3$
175,6	499,1	$584,5 \pm 2,9$	584.1 ± 2.9
175,6	995	$584 \pm 3,1$	$580,5 \pm 3,1$
100,4	0	411.8 ± 3.5	414.6 ± 3.6
100,4	10,2	414.1 ± 3.7	$409,6 \pm 2,7$
100,4	499,1	$404,7\pm2,7$	404.6 ± 2.7
100,4	995	$403,1 \pm 3,5$	$401,3 \pm 2,7$
80,4	0	351 ± 2.8	347 ± 1.8
80,4	10,2	346 ± 1.9	$347,4\pm\ 2,4$
80,4	499,1	$338,5 \pm 1,9$	$338,9 \pm 2,1$
80,4	995	$335,9 \pm 2,3$	$337,3\pm 3$
47,3	0	$242,9 \pm 2$	242.8 ± 2.3
47,3	10,2	$243,6 \pm 2$	$243,5 \pm 1,9$
47,3	499,1	$236,5 \pm 1,6$	$236,2 \pm 1,7$
47,3	995	$234,6 \pm 1,7$	$235,3\pm 1,9$

Tabelle 3.1: Amplitude mit und ohne einem parallem Widerstand R_p von 1 $\mathrm{G}\Omega$

C005			
Pulsamplitude Pulsdämpfung	1011 1100 000 000 0111	263 mV*	520 mV**
Pulsform	11		
Spannungen [V]	10, 50, 100, 200, 500, 700, 1000, 1250, 1500,, 4000		

Tabelle 3.2: Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Spannungen für C005(* gemessen mit $50\,\Omega$ -Abschluss, ** mit $1M\,\Omega$ -Abschluss)

kung und vermeidet damit Arbeit und potentielle Fehlerquellen. Die Verstärkung aller Signale sollte über die gesamte Messung nicht geändert werden müssen. Insbesondere bei dem Hauptelektrodensignal muss beachtet werden, dass es stark von der angelegten Spannung abhängt. Weitere Einstellungen wie zum Beispiel den τ -Wert des Vorverstärkers können die Energieauflösung verbessern, auch wenn diese für unsere Messungen keine besonders große Rolle spielt.

C005

Der erste Detektor, der mit der Pulsermethode vermessen wurde, ist C005¹². Bei unterschiedlichen Sperrspannungen wurden Spektren des Pulsers aller Segmente und der Hauptelektrode fünf Minuten lang aufgezeichnet. Die Einstellungen des Pulsers und die gemessenen Spannungen sind in Tabelle 3.2.3 zusammengstellt. In Abbildung 3.14 sind die Spektren des Pulsersignals für die Reihe A mit den Segmenten A1, A2, A3, A4, A5 und A6 bei einer Spannung von 3000 Volt dargestellt. Man kann bereits erkennen, dass sich die unterschiedlichen geometrischen Eigenschaften der Segmente und den damit verbundenen unterschiedlichen Kapazitäten in den Energien der Pulsersignale wiederspiegeln. Die Segmente des zweiten Ringes, welche die geringste Oberfläche und das kleinste Volumen haben, zeigen zum Beispiel die niedrigsten Amplituden und somit die geringsten Energien.

Bei der Vermessung von C005 wurde bei allen Spannungen neben dem Pulsersignal auch das Spektrum einer ²⁴¹Am-Quelle aufgenommen. In dieser ersten Messung wurde erkannt, dass die Verstärkung des Hauptelektrodensignals optimal eingestellt werden musste. Weiterhin muss konsequent darauf geachtet werden, dass die Steuerung des Pulsers in der Konverterbox der Hauptelektrode bei jedem Spannungswert kontrolliert wird, sodass es zu keinen Verschiebungen kommt.

 $^{^{12}}$ Seriennummer 74033

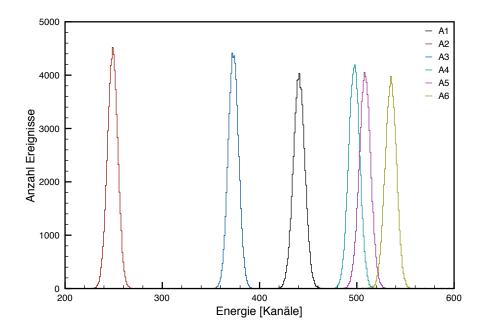


Abbildung 3.14: Pulserspektrum der Segmente A1, A2, A3, A4, A5 und A6 des Detektors C005 bei 3000 V Sperrspannung

S002, C006, und B005

Die Detektoren S002, C006 und B005¹³ wurden analog zu C005 vermessen, dabei wurde eine Iseg Hochspannungsversorgung genutzt. Bei den Messungen wurde keine Americium—Quelle verwendet. Die Einstellungen des Pulsers und die gemessenen Spannungen sind in Tabelle 3.3 zusammengestellt. Teilweise musste der Schwellenwert der digitalen Elektronik leicht gesenkt werden, um alle Signale aufnehmen zu können. Dieser Wert hat keinen Einfluss auf die Lage der jeweiligen Peaks.

A003 und B003

Die beiden Detektoren A003 und B003 14 waren im Gegensatz zu den anderen Detektoren im ATC 2 eingebaut. Die Messungen betrafen lediglich die Hauptelektrode. Bei allen Messungen wurde jeweils fünf Minuten lang das Pulsersignal und Energiespektren für 210 Am und 60 Co für unterschiedliche Spannungen aufgenommen. Die Einstellungen

	Detektor	Seriennummer	
13	S002	73821	
	C006	74115	
	B005	74065	
	Detektor	Seriennummer	
14	A003	74009	
	B003	74026	

S002				
Pulsamplitude Pulsdämpfung	1100 0000 1111 1111 85,6 mV* 170,5 m		170,5 mV**	
Pulsform		11		
	10, 25,	50, 75, 100		
Spannungen [V]	200, 300,, 100	00, 1100, 125	50, 1400	
	$1500, 1750, \dots$, 4000, 4500,	, 5000	
C006				
Pulsamplitude	1100 0000 1111 1111	05 6 m V*	170,5 mV**	
Pulsdämpfung	1111	$85,6\mathrm{mV}^*$	170,5 m v	
Pulsform	11			
Spannungen [V]	10, 30, 50, 100, 200, 300, 400			
	500, 750,, 2500, 3000, 3500, 4000, 4500			
B005				
Pulsamplitude	1100 0000 1111 1111	05 6 m V*	170 5 mV**	
Pulsdämpfung	1111	$85,6\mathrm{mV}^*$	$170,5 \mathrm{mV^{**}}$	
Pulsform	11			
Spannungen [V]	10, 25, 50, 75, 100, 200, 300, 400 500, 700, 1000, 1250, 1500,, 4000			

Tabelle 3.3: Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Spannungen für S002, C006 und B005(* gemessen mit $50\,\Omega$ -Abschluss, ** mit $1M\,\Omega$ -Abschluss)

des Pulsers und die angelegten Sperrspannungen sind in Tabelle 3.4 zusammengefasst. Bei B003 mussten bei den Messungen ab 200 V abwärts die Verstärkung geändert werden. Weiterhin wurde die Amplitude und die Abfallzeit des Pulsersignals nach dem Hauptelektroden-Vorverstärkers mit einem digitalen Oszilloskop¹⁵ für unterschiedliche Spannungen vermessen. Die Messergebnisse sind im Anhang in Tabelle C.2 auf Seite 96 zusammengestellt.

3.2.4 Auswertung

Die in den vorherigen Abschnitten beschriebenen Messungen liefern alle relative Amplituden. Um aus diesen Werten absolute Werte für die Kapazität zu berechnen, müssen diese auf absolute Werte normalisiert werden. Dazu wurden die Kapazitäts-Messungen des Herstellers der Kristalle genutzt. Sie wurden mit einem LCZ-Meter¹⁶ an dem unsegmentierten nicht gekapselten Kristall durchgeführt. Für jeden Kristall werden die entsprechenden Messungen mit den Datenblättern der Kristalle mitgeliefert. Die relevanten Daten sind im Anhang B in den Tabellen B.1 und B.2 zusammengefasst.

 $^{^{15}\}mathrm{LeCroy}$ Wavesurfer x
47

¹⁶Hewlett Packard LCZ Meter, Modell 4277A

B003 und A003			
Pulsamplitude	1011 1100 000 000	263 mV*	520 mV**
Pulsdämpfung	0111	205 III V	320 m v · ·
Pulsform	11		
Spannungen [V]	50, 100, 200, 500, 700, 1000, 1250,, 4500		

Tabelle 3.4: Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Spannungen für A003 und B003(* gemessen mit $50\,\Omega$ -Abschluss, ** mit $1\,\mathrm{M}\,\Omega$ -Abschluss)

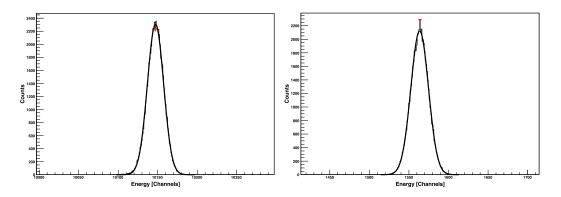


Abbildung 3.15: Energiespektrum und angepasste Gaussfunktion der Hauptelektrode (links) und des Segmentes C3 (rechts) des Detektors C006 bei einer Sperrspannung von $300\,\mathrm{V}$

Um die unterschiedlichen Stufen und die Schwierigkeiten der Auswertung darzustellen, werden hier alle Schritte am Beispiel der Messung des Detektors C006 dargestellt. In dieser Messung wurde bei 23 unterschiedlichen Hochspannungen der Detektor vermessen. Somit muss in 851 Spektren der Energieschwerpunkt des Pulserpeaks bestimmt werden. Für diese Aufgabe wurden Computer-Programme basierend auf ROOT [24] und HDTV [25] entwickelt. Sie suchen in jedem Spektrum nach dem Peak und fitten jeweils eine Gauss-Funktion an die Messdaten. Zwei solcher Fits sind in Abbildung 3.15 dargestellt. Die Verläufe der Energiespektren sind in den Abbildungen 3.16 und 3.17 dargestellt. Eine Methode, die absoluten Kapazitäten zu bestimmen, besteht darin, die jeweilige Amplitude des Verstärkers der Hauptelektrode A_c auf die gegebene Kapazität C_C bei gleicher Spannung U zu setzen und die einzelnen Segmente entsprechend ihres Anteiles an der Summe der Segmentamplituden zu gewichten.

$$C_i|_U = \frac{A_i}{\sum_{j=0}^{36} A_j} C_C \Big|_U$$
 (3.18)

Normalisiert man seine Daten auf den Wert einer Spannung, so sollten aufgrund der linearen Abhängigkeit der Amplitude von der Kapazität ebenfalls korrekte Kapazitäten

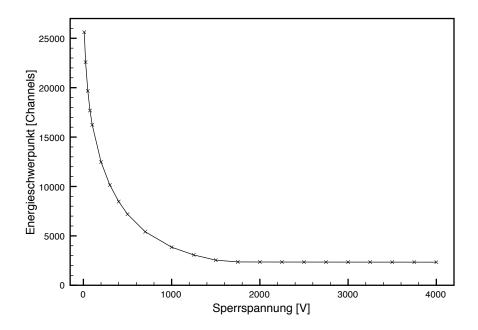


Abbildung 3.16: Verlauf des Energieschwerpunkts des Pulsersignals der Hauptelektrode des Detektors C006 für unterschiedliche Sperrspannungen

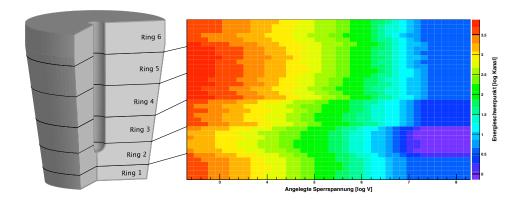


Abbildung 3.17: Matrixdarstellung der Energieschwerpunkte des Pulsersignals aller Segmente des Detektors C006 für unterschiedliche Sperrspannungen in logarithmischer Darstellung

bei den anderen Hochspannungswerten bestimmt werden. Es bietet sich an, auf Werte bei hohen Spannungen zu normalisieren, da hier die Kapazität sehr konstant ist. Der Normalisierungsfaktor k ist dann gegeben durch

$$k = \frac{C}{A} \Big|_{U=4000} \tag{3.19}$$

und alle anderen Kapazitäten ergeben sich durch einfache Multiplikation mit diesem Faktor. Wie aus der Messung mit der Ersatzschaltung bekannt, muss zusätzlich der in Reihe geschaltete Koppelkondensator $C_{\rm k}$ berücksichtigt werden. Der Normalisierungsfaktor ergibt sich dann zu:

$$k = \frac{CC_{\rm k}}{A(C + C_{\rm k})} \Big|_{U=4000\,\rm V}$$
 (3.20)

Es genügt nicht, diesen Faktor mit den jeweiligen Werten der Amplitute bei unterschiedlichen Hochspannungen zu multiplizieren, sondern jeder Wert muss aufgrund des in Reihe geschalteten Koppelkondensators wie in folgender Gleichung dargestellt korrigiert werden.

$$C|_{U} = \frac{kC_{\mathbf{k}}A}{C_{\mathbf{k}} - kA}\Big|_{U} \tag{3.21}$$

Der im Testkryostaten eingebaute Koppelkondensator hat eine Kapazität von 1 nF bei Raumtemperatur. Da er sich im kalten Teil des Krysotaten befindet, sinkt die Kapazität aufgrund der niedrigen Temperatur um ca. 20%. Bei der Korrektur ist entsprechend von 800 pF als Kapazität des Koppelkondensators ausgegangen worden. In Abbildung 3.18 sind die Kapazitätswerte des Herstellers, die normalisierten Werte der Messung und deren korrigierten Werte in einem Graphen zusammengefaßt. Wie man gut erkennen kann, divergieren die Daten unter 1000 V.

Nach Gleichung (2.10) sollte bei einer Verunreinigungskonzentration von 10^{16} Atomen pro m^3 die Dicke der Verarumungszone bei $10\,\mathrm{V}$ Sperrspannung $1,3\,\mathrm{mm}$ betragen. Setzen wir dies in die Formel (3.2) ein, so ergibt sich eine Kapazität von $2,6\,\mathrm{nF}$. Bei einer Verunreinigungskonzentration von 10^{15} Atomen pro m^3 ergeben sich $830\,\mathrm{pF}$ und bei 10^{17} Atomen pro m^3 ergeben sich $8,6\,\mathrm{nF}$. Damit liegt lediglich die korrigierte Messung in der richtigen Größenordnung. Die Messung des Herstellers und die unkorrigierten Ergebnisse sind zu niedrig.

In den späteren direkten Messungen wurde die Erfahrung gemacht, dass man zum Schutz des LCZ–Meters im Allgemeinen einen Koppelkondensator einsetzt. Stellt man die Hypothese auf, dass auch bei der Messung des Herstellers ein Koppelkondensator C_{k_C} verwendet und die Werte nicht korrigiert wurden, so ergibt sich eine neue Situation. Weiterhin konnte man bei den Messungen mit der Ersatzschaltung erkennen, dass die lineare Abhängigkeit der Pulseramplitude von der Kapazität nicht durch den Ursprung geht, sondern einen gewissen Versatz aufweist. Dies könnte von der Streukapazität Z_s , die parallel zu dem eigentlichen Detektor geschaltet ist, verursacht worden sein. Diese Streukapazität ist lediglich für den Vorverstärker der Hauptelektrode relevant. Definieren wir die von Canberra gemessene Kapazität C_C als

$$C_C = \frac{C_D C_{k_C}}{C_D + C_{k_C}} \tag{3.22}$$

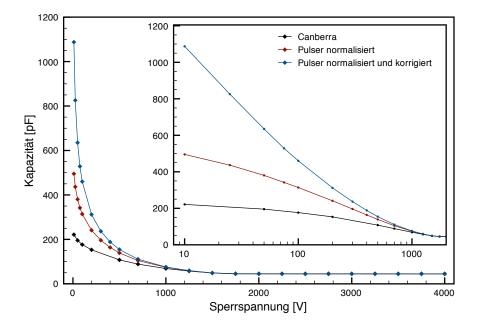


Abbildung 3.18: Gesamtkapazität des Detektors C006 gegen Sperrspannung ermittelt durch Normalisierung und korrgierter Normalisierung im Vergleich zur Messung des Herstellers (Canberra)

und die mit der Pulsermethode vermessene Kapazität C_M als

$$C_M = \frac{C_D C_k}{C_D + C_k} = b + aA \tag{3.23}$$

mit dem Achsenabschnittswert b, dem Linearkoeffizienten a und der tatsächlichen Kapazität des Detektors C_D . C_{k_C} ist der vom Hersteller einegestzte Koppelkondensator und C_k ist der im Kryostaten eingebaute Koppelkondensator. Lösen wir (3.22) nach C_D auf und ersetzen es in (3.23), so ergibt sich

$$b + aA = \frac{C_C C_{k_C} C_k}{C_C C_{k_C} + C_k C_{k_C} - C_k C_C}$$
(3.24)

Nun ist der Koppelkondensator C_{kC} nicht bekannt. Um ihn zu ermitteln, ist es möglich, Gleichung (3.24) nach A umzustellen und dann die Parameter a, b und C_{kC} über einen Fit¹⁷ zu bestimmen. Ein solcher Fit ist für die Werte aller Messungen in Abbildung 3.19 dargestellt. Er bestimmt die folgenden Parameter: $a=0,01964\pm0,00022\,\mathrm{pF}$ pro Kanal, $b=5,70\pm0,74\,\mathrm{pF}$ und $C_{kC}=262,7\pm1,6\,\mathrm{pF}$.

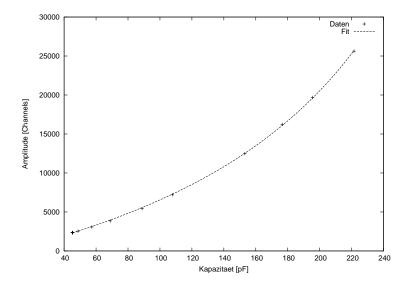


Abbildung 3.19: Pulseramplituden des Vorverstärkers gegen vom Hersteller gemessene Kapazität bei unterschiedlichen Spannungen für Detektor C006

Nun kann man mit den so bestimmten a und b die Pulsermessung normalisieren und für einen Koppelkondensator von 800 pF korrigieren. Die Daten der Hersteller–Messung

¹⁷genutzt wurde [26]

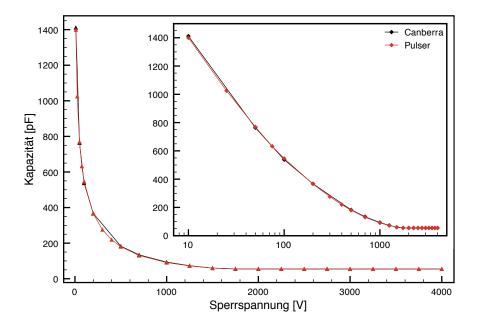


Abbildung 3.20: Korrigierte Pulsermessung und korrigierte Herstellermessung (Canberra) gegen angelegte Sperrspannung

können mit dem bestimmten Koppelkondensator korrigiert werden. Die so erzielten Ergebnisse sind in Abbildung 3.20 dargestellt. Die Kapazitäten des Herstellers und die hier gemachten Messungen stimmen überein und liegen im Bereich der theoretisch erwarteten Werte. Die Kapazitäten der Segmente werden analog zu der Formel (3.18) bestimmt, nur dass die korrigierten Werte als Ausgang genutzt werden.

$$C_i|_U = \frac{A_i}{\sum_{j=0}^{36} A_j} C_D \Big|_U$$
 (3.25)

Die so bestimmten Werte sind in Abbildung 3.21 zusammengestellt.

Die Fit-Ergebnisse aller Detektoren sind in Tabelle 3.5 zusammengefasst. Die Graphen der Fits aller Messungen sind im Anhang C.4 zusammengestellt. Die bestimmten Kapazitäten der vom Hersteller eingesetzten Koppelkondensatoren sind in Abbildung 3.22 zusammengefasst. Man erkennt, dass bei allen asymetrischen Detektoren ein ähnlicher Wert bestimmt wurde und der des symmetrischen Kristalls stark abweicht. Bei dem symmetrischen Detektor S002 wurde anscheinend ein ähnlicher Koppelkondensator wie in dem Testkryostaten verwendet. Dies erkennt man sowohl im bestimmten Wert des Koppelkondensators als auch am linearen Zusammenhang zwischen den Pulseramplituden und den Kapazitäten des Herstellers (siehe Abbildung C.8 im Anhang auf Seite 100).

Bei den Messungen der Detektoren A003 und B003 wurden nur die Hauptelektroden

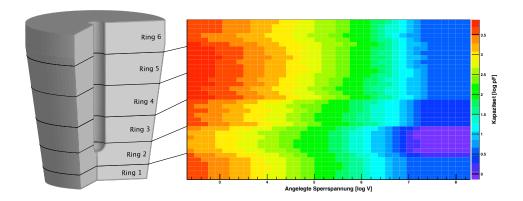


Abbildung 3.21: Kapazitäten der Segmente des Detektors C006 in logarithmischer Darstellung

Detektor	C_{K_C} [pF]	b [pF]	a [pF]
A003	290.525 ± 4.4	-9.6712 ± 1.57	0.0174561 ± 0.0003722
A003*	294.231 ± 3.906	-8.04433 ± 4.088	0.328896 ± 0.009874
B003	270.173 ± 3.55	-12.027 ± 1.066	0.0173156 ± 0.0002777
B003*	306.703 ± 11.35	-2.07912 ± 8.745	0.983251 ± 0.07116
B005	316.943 ± 3.534	-7.5089 ± 1.832	0.0210975 ± 0.0004348
C005	286.877 ± 1.971	-23.771 ± 1.038	$0.00429809 \pm 0.00005061$
C006	262.74 ± 1.564	5.69977 ± 0.741	0.0196438 ± 0.0002215
S002	815.336 ± 7.778	-15.762 ± 0.6941	0.0263137 ± 0.000183

Tabelle 3.5: Durch Anpassen ermittelte Parameter, Messung mit * basieren auf Messungen mit dem digitalen Oszilloskop

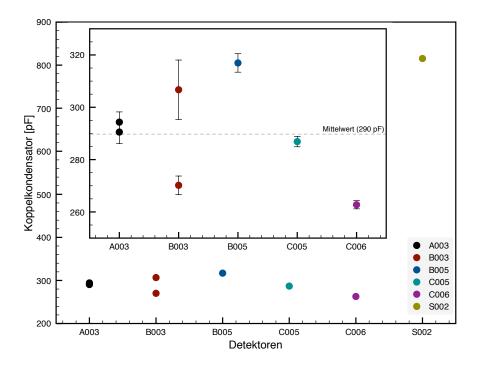


Abbildung 3.22: Durch Anpassen ermittelte Kapazitäten der vom Hersteller eingesetzten Koppelkondensatoren

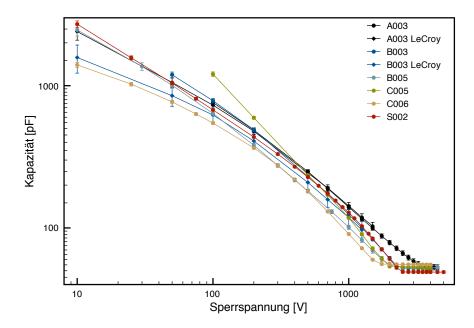


Abbildung 3.23: Gesamtkapazitäten aller Detektoren in doppelt logarithmischer Auftragung

ausgewertet. Die Messungen mit dem Oszilloskop und der XIA–Elektronik mussten aufgrund der unterschiedlichen Verstärkungen getrennt behandelt werden.

In Abbildung 3.23 ist eine Zusammenstellung der Kapazitäten als Funktion der angelegten Sperrspannung für sämtliche Detektoren dargestellt. Die Messungen der Detektoren A003 und B003 sind in den Abbildungen 3.24 und 3.25 nocheinmal gesondert dargestellt. Bei Detektor A003 ist die Übereinstimmung zwischen der Messung mit der XIA-Elektronik und dem Oszilloskop gut zu erkennen. Bei Detektor B003 differieren die Werte unter 200 V. Hierbei muss angemerkt werden, das bei 200 V die Verstärkung der XIA-Messung gewechselt wurde. Die durchgeführte Anpassung verursacht unter Umständen einen Fehler, der nicht mit in die Fehlerrechnung einging.

In der Abbildung 3.26 sind die Kapazitäten der Spalte A mit den Segmenten A1, A2, A3, A4, A5 und A6 des Detektor B005 abhängig von der angelegten Sperrspannung dargestellt. In Abbildung 3.27 sind die Kapazitäten der Reihe 3 mit den Segmenten A3, B3, C3, D3, E3 und F3 für unterschiedliche Sperrspannungen dargestellt. Wie erwartet, variieren die Segmente einer Reihe nur leicht, während die Variationen einer Spalte aufgrund der unterschiedlichen Geometrie stark sind.

Die Ergebnisse der Detektoren S002, B005, C005 und C006 sind tabellarisch im Anhang ab Seite 101 zusammengestellt.

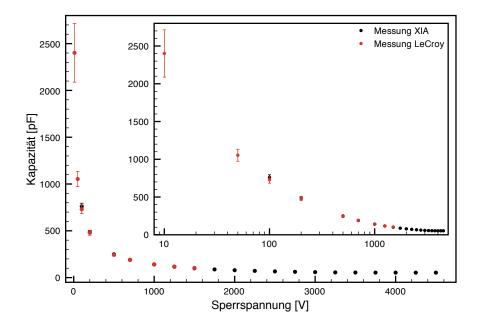


Abbildung 3.24: Vergleich der Kapazitäten des Detektors A003 für die Messung mit der digitalen XIA–Elektronik und dem digitalen LeCroy–Oszilloskop

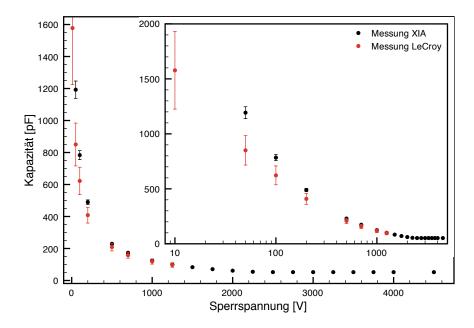


Abbildung 3.25: Vergleich der Kapazitäten des Detektors B003 für die Messung mit der digitalen XIA–Elektronik und dem digitalen LeCroy–Oszilloskop

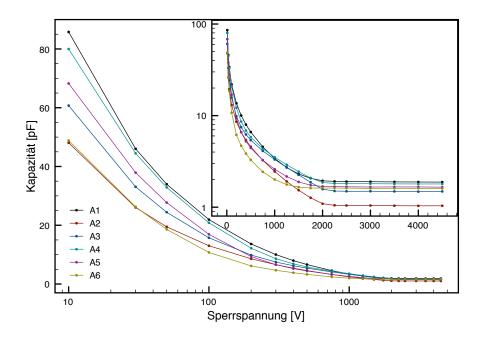


Abbildung 3.26: Kapazitäten der Segmente A1 bis A6 des Detektors B005

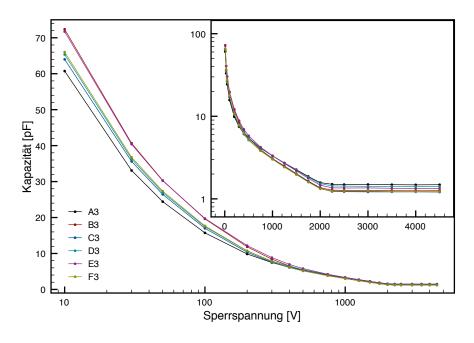


Abbildung 3.27: Kapazitäten der Segmente A3 bis F3 des Detektors B005

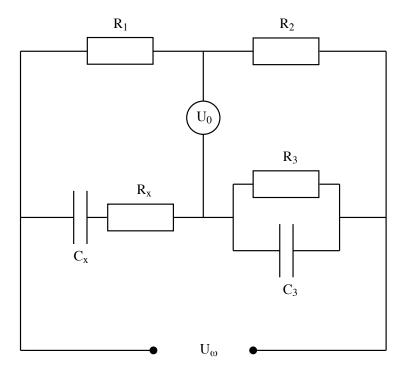


Abbildung 3.28: Schaltbild einer Wechselstrombrücke

3.3 Direkte Messungen

Um die Qualität der Pulsermessungen beurteilen zu können, wurden absolute Messungen durchgeführt. An einzelnen Beispielen wird demonstriert, wie genau die Messung mit Hilfe der Pulsermethode ist.

3.3.1 Messprinzip

Es existieren unterschiedliche Methoden zur absoluten Messung der Kapazität. Eine Möglichkeit, sowohl die Kapazität des Detektors als auch den in Reihe geschalteten Widerstand zu messen, ist eine Wechselstrombrücke [27]. In Abbildung 3.28 ist das Schaltbild einer solchen Brücke dargestellt.

Die jeweiligen Wechselstromwiderstände der Zuleitungen zu Messpunkt U_0 sind gegeben durch

$$Z_1 = R_1$$

$$Z_2 = R_2$$

$$Z_3 = \frac{R_3}{1 + i\omega C_3 R_3}$$

$$Z_x = R_x + \frac{1}{i\omega C_x}$$

$$(3.26)$$

Liegt eine Wechselspannung U_{ω} mit einer Frequenz von $2\pi\omega$ an, so ist bei einer ausgeglichen Brücke die Spannung an dem Messpunkt U_0 Null und es gilt

$$\frac{Z_1}{Z_2} = \frac{Z_x}{Z_3} \tag{3.27}$$

Ersetzt man in dieser Gleichung die Widerstände so ergibt sich

$$\frac{R_1}{R_2} = \frac{R_x}{R_3} + \frac{C_x}{C_3} + i\omega C_3 R_x + \frac{1}{i\omega R_3 C_x}$$
 (3.28)

Diese Gleichung hat einen imaginären und realen Anteil. Es ergeben sich zwei quadratische Gleichungen, die unabhängig voneinander gelten. Somit gibt es für R_x und C_x jeweils zwei Lösungen, wobei nur die positiven Lösungen physikalisch sinnvoll sind. Für den Widerstand R_x folgt

$$R_x = \frac{\omega R_1 C_3 R_3 + \sqrt{\omega R_1^2 C_3^2 R_3^2 + 4R_2^2 C_3}}{2\omega R_2 C_3}$$
 (3.29)

und für die Kapazität C_x

$$C_x = -\frac{\omega R_1 C_3 R_3 - \sqrt{\omega R_1^2 C_3^2 R_3^2 + 4R_2^2}}{2\omega R_2 R_3}$$
 (3.30)

Kann man also Frequenz ω und die Bauteile $R_{1,2,3}$, C_3 so variieren, dass die Brücke ausgeglichen ist, so kann man die Kapazität und den seriellen Widerstand berechnen. Einfache Hand-Multimeter können häufig ebenfalls Kapazitäten messen. Dabei binden sie die zu untersuchende Kapazität in einen Schwingkreis ein und untersuchen die Phasenverschiebung.

Im Allgemeinen vertragen die Geräte zur Messung der Kapazität keine hohen Spannungen. Daher müssen sie geschützt werden. Eine entsprechende Schutzschaltung, siehe Abbildung 3.29, wurde entwickelt und wird hier kurz erläutert. Die Hochspannung wird über einen HV–Filter und einen 1 G Ω Widerstand an die Hauptelektrode angelegt. Parallel zur Hochspannung ist ein Koppelkondensator von 100 nF geschaltet. Er kann ohne Durchschlag bei einer Spannung von bis zu 2000 V betrieben werden. Hinter diesem Kondensator kommt eine zweite Schutzschaltung welche mit Dioden eingerichtet ist. Sobald eine Spannung größer als ± 10 V anliegt, leiten die Dioden den Strom. Durch diese zwei Maßnahmen ist das Messgerät vor der Hochspannung geschützt. Es sieht aufgrund des Kondensators lediglich Wechselströme. Die Kapazität wurde mit Absicht relativ groß gewählt, sodass sie einen kleinen Effekt auf die Messung hat. Die Segmente des Detektors werden direkt an das Messgerät angeschlossen und liegen außerdem über einen 1 G Ω Widerstand auf Masse.

Alle Elektroden des Detektors sollten für eine direkte Messung ohne zwischengeschaltete Elektronik ereichbar sein. Weiterhin müssen die Segmente kurzgeschlossen werden, um die Kapazität des gesamten Detektors zu messen. Möchte man einzelne Segmente vermessen, sollte es im Prinzip genügen, nur dieses Segment mit der Schaltung zu verbinden und alle anderen Segmente über einen entsprechenden Widerstand auf Masse zu legen.

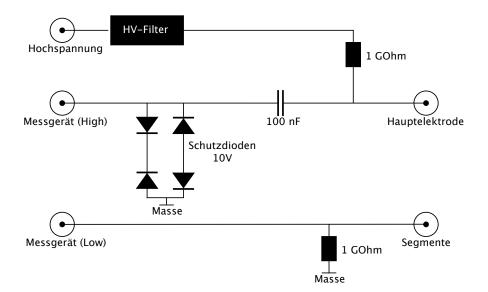


Abbildung 3.29: Schematischer Aufbau der Schutzschaltung

3.3.2 Direkte Messungen mit Detektor S002

Da der Kristall S002 längere Zeit zur Verfügung stand und in dem symmetrischen Tripel-Kryostaten betrieben werden kann, wurden die Messungen mit S002 durchgeführt.

Messungen des gesamten Kristalls

Der Detektor wurde analog zu der auf Seite 24 beschriebenen Vermessung der Kennlinie in den Kryostaten eingebaut und verkabelt. Die Segmente und die Hauptelektrode wurden mit den entsprechenden Eingängen der Schutzschaltung verbunden. Ein einfaches Handmessgerät wurde zur Bestimmung der Kapaztität genutzt. Um den Einfluss der Verkabelung und der Schutzschaltung auf die Messung zu korrigieren, wurde die Verbindung zwischen Hauptelektrode und Schutzschaltung abgezogen und das Schild des SHV-Kabels auf Masse gelegt. Der so bestimmte Versatz wurde dann von den Messwerten abgezogen.

Insgesamt wurden drei Messreihen aufgenommen. In den Bereichen von 0 bis 100 V und 0 bis 1000 V wurde die Ortec 710 Hochspannungsversorgung genutzt. Der Versatz betrug 505 pF. In dem Bereich von 0 bis 2000 V wurde die Spannungsversorgung der Firma Iseg genutzt. Hierbei betrug der Versatz 508 pF. Alle Messungen sind mit bereits abgezogenen Versätzen in der Tabelle 3.6 zusammengefasst. Es war wichtig, zwischen dem Anlegen der Spannungen und dem Ablesen des Messwertes eine gewisse Zeit zu warten, bis sich der Messwert stabilisiert hat. Dies liegt darin begründet, das sich der Koppelkondensator und der Detektor langsam aufladen. Da dies für den 1 G Ω Widerstand der Schutzschaltung relativ lange dauert, wurde dieser später durch einen 22 M Ω ersetzt.

Channing [V]	Kapazität [pF]			
Spannung [V]	Ortec 100 V	Ortec 1000 V	Iseg	
0	6725	-	6772	
10	2165	-	2272	
20	1525	-	-	
30	1233	-	-	
40	1057	-	-	
50	936	930	937	
60	846	-	-	
70	776	-	-	
80	720	-	-	
90	673	-	_	
100	633	635	628	
200	-	417	408	
300	-	322	-	
400	-	265	_	
500	-	226	216	
600	-	198	-	
700	-	176	166	
800	-	159	-	
900	-	145	-	
1000	-	132	120	
1250	-	-	96	
1500	-	-	78	
1750	-	-	65	
2000	-	-	55	

Tabelle 3.6: Direkte Messungen der Kapazität von ${\rm S}002$

Messungen der einzelnen Segmente

Die Messungen der einzelnen Segmente war problematischer als die Messung des gesamten Detektors. Alle Segmente bis auf eines wurden über einen $22\,\mathrm{M}\Omega$ Widerstand auf Masse gelegt. Das zu messende Segment wurde an die Segmentbuchse der Schutzschaltung gelegt. Um analog zu der Messung des gesamten Detektors den Einfluss der Schutzschaltung und der restlichen Verkabelung zu korrigieren, wurde die Kapazität gemessen, als das Kabel zwischen Hauptelektrode und Schutzschaltung nicht verbunden war und dessen Abschirmung auf Masse lag. Die so bestimmten Versätze waren allerdings von der angelegten Hochspannung abhängig. Veränderungen im gesamten Erdungskonzept, wie zum Beispiel das Trennen der Masse der Segmente und des Kryostaten brachten zwar Verbesserungen in der Größe des Versatzes, allerdings keine Verbesserungen in der Abhängigkeit von der Hochspannung. Um eine zu den Messungen des gesamten Kristalls analoge Situation zu schaffen, wurden diese Änderungen nicht übernommen. Stattdessen wurde abhängig von der Hochspannung der Versatz bestimmt, indem die Verbindung zwischen Schutzschaltung und Hauptelektrode kurzzeitig getrennt und die Abschirmung des Verbindungskabels auf Masse gelegt wurde. Als Hochspannungversorgung wurde das Ortec 710 Modul verwendet. Für alle Segmente der Spalte A, also A1, A2, A3, A4, A5 und A6, wurde jeweils der Bereich bis 100 V vermessen. Die Ergebnisse sind in Tabelle 3.7 zusammengestellt.

3.4 Vergleiche der Messungen

Wichtig ist der Vergleich der Pulsermessung mit der absoluten direkten Messung der Gesamtkapazität des Detektors. Beide Messungen sind in Abbildung 3.30 zusammen dargestellt. Wie man erkennen kann, stimmen die Werte bei geringen Spannungen nicht innerhalb der Fehler überein. Insbesondere der Wert bei 10 V zeigt relativ große Unterschiede. Hierbei ist zu beachten, dass bei geringen Spannungen die Kapazität sehr stark von der Spannung abhängt. Die Iseg-Hochspannungsversorgung ist für Hochspannungen von mehreren tausend Volt konzipiert und bei sehr kleinen Spannungen nicht zuverlässig, was den Wert der Spannung betrifft. Für höhere Spannungen stimmen die Werte gut überein.

Die Segmente stimmen nicht sehr gut überein. Die Messungen sind in Abbildung 3.31 gegenübergestellt. Die direkt gemessen Kapazitäten sind um den Faktor 2 zu klein. Addiert man alle und multipliziert sie mit sechs, um auf die Gesamtkapazität des Detektors zu kommen, so sind diese Werte für alle Spannungen zu niedrig. Sie sind in Tabelle 3.8 aufgelistet.

C [XI]	Segment A1		Segment A2			
Spannung [V]	M [pF]	V [pF]	D [pF]	M [pF]	V [pF]	D [pF]
0	390	246	144	302	213	89
10	219	181	38	193,2	166,1	27,1
20	198	170	28	178,6	157,5	21,1
30	189,5	165,7	23,8	172	153,8	18,2
40	183,4	162,3	21,1	168,1	151,5	16,6
50	179,2	159,9	19,3	165,3	150	15,3
60	176	158,2	17,8	163,4	149	14,4
70	173,5	156,8	16,7	161,6	148,1	$13,\!5$
80	171,5	155,8	15,7	160,4	147,4	13
90	169,9	155	14,9	159,3	146,8	12,5
100	168,5	154,3	14,2	158,3	146,2	12,1
C [X7]	Se	egment A	.3	Se	egment A	4
Spannung [V]	M [pF]	V [pF]	D [pF]	M [pF]	V [pF]	D [pF]
0	333	222	111	366	237	129
10	201	170	31	213	178	35
20	186,4	162,2	24,2	196,3	169	27,3
30	178,6	157,8	20,8	187,1	163,9	23,2
40	173,9	155,3	18,6	181,8	161	20,8
50	170,6	153,4	17,2	178	158,9	19,1
60	168,2	152,2	16	175,3	157,5	17,8
70	166,3	151,1	15,2	173	156,4	16,6
80	164,8	150,3	14,5	171,2	155,4	15,8
90	163,5	149,7	13,8	169,8	154,7	15,1
100	162,3	149,1	13,2	168,5	154	14,5
Spanning [V]	Se	egment A	.5	Segment A6		
Spannung [V]	M [pF]	V [pF]	D [pF]	M [pF]	V [pF]	D [pF]
0	354	234	120	319	218	101
10	210	176	34	200	170	30
20	194,3	167,6	26,7	186,4	162,7	23,7
30	185,8	163	22,8	179,1	158,7	20,4
40	180,6	160,1	20,5	174,7	156,2	18,5
50	177,1	158,2	18,9	171,6	154,5	17,1
60	174,5	156,8	17,7	169,3	153,2	16,1
70	172,4	155,8	16,6	167,4	152,4	15
80	170,7	154,9	15,8	165,9	151,5	14,4
90	169,3	154,1	15,2	164,7	150,9	13,8
100	168	153,6	14,4	163,6	150,4	13,2

Tabelle 3.7: Messung (M), Versatz (V) und Differenz (D = M - V) der Segmente A1, A2, A3, A4, A5 und A6 von S002

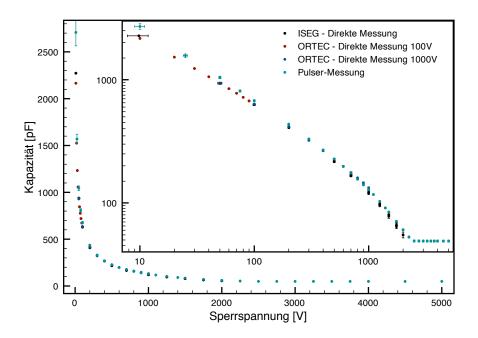


Abbildung 3.30: Vergleich zwischen Pulsermessung und direkter Messung

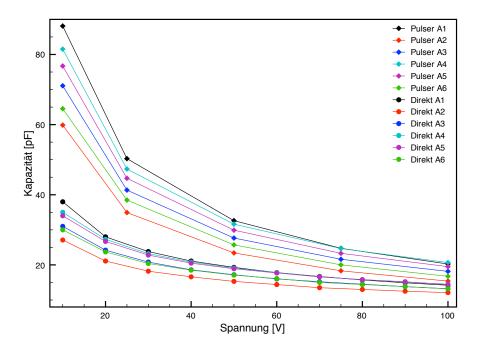


Abbildung 3.31: Vergleich der Segment–Kapazitäten zwischen Pulsermessung und direkter Messung

Spannung [V]	Summe Segmente [pF]	Direkte Messung [pF]	Pulsermessung [pF]
10	1170,6	2165 / 2272	2707
20	906	1525	-
25	-	-	1569
30	775,2	1233	-
40	696,6	1057	-
50	641,4	936 / 930 / 937	1043
60	598,8	846	-
70	$561,\!6$	776	-
75	-	-	809,5
80	$535,\!2$	720	-
90	511,8	673	-
100	489,6	633 / 635 / 628	676

Tabelle 3.8: Vergleich der Summe der Segmente, der direkten Messung und der Pulsermessung für ${\rm S}002$

Die gemessenen und ausgewerteten Daten werden in diesem Kapitel genutzt, um Aussagen über die Eigenschaften des Detektors zu machen. Außerdem werden Computersimulationen vorgestellt, welche mit den gemessenen Daten verglichen werden können.

4.1 Bestimmung der Verunreinigungskonzentration

In diesem Abschnitt werden die gewonnenen Daten aus Kapitel 3 untersucht. Es werden einfache Geometrien, wie in den Abschnitten 2.1.3 und 2.2 vorgestellt, genutzt, um Aussagen über die Verunreinigungskonzentration des Detektormaterials zu machen.

4.1.1 Bestimmung der Verunreinigungskonzentration an der Oberfläche

Wie in Abschnitt 3.1.2 besprochen, genügt es bei sehr geringen Spannungen lediglich die Oberfläche des Detektors zu betrachten. Für Detektor S002 wurde die Kapazität unterhalb von $100\,\mathrm{V}$ sehr genau vermessen und auch eine Messung ohne Spannung wurde durchgeführt. Die Oberfläche des Mantels und des Bodens eines symmetrischen AGATADetektors wurde aus den technischen Zeichnungen berechnet und beträgt $236, 22\,\mathrm{cm}^2$. Aus gemessener Kapazität und Oberfläche lässt sich mit Hilfe der Formel (2.11) die Dicke s der Verarmungszone für $0\,\mathrm{V}$ bestimmen.

$$\frac{A\epsilon}{C} = s \tag{4.1}$$

Es ergibt sich ein Wert von $s=(0,496\pm0,002)\,\mathrm{mm}$ für Detektor S002. Für eine Spannung von 10 V kann man mit Hilfe der Formel (2.11) die mittlere Verunreinigigungskonzentration an der Oberfläche des Kristalles bestimmen.

$$N_D \simeq \frac{2VC^2}{e\epsilon A^2} \tag{4.2}$$

Mit Hilfe der Pulsermethode kann man auch die Kapazitäten der Segmente und damit die mittlere Verunreinigungskonzentration an der Oberfläche des jeweiligen Segmentes bestimmen. Bei den Segmenten der sechsten Reihe ist zu beachten, dass aufgrund der Passivierung nicht die komplette Oberfläche als aktiv betrachtet werden kann. Daher wurde in dieser Analyse eine reduzierte Kontaktfläche von 90% genutzt. Die so bestimmten Messwerte sind für die Detektoren C006 und B005 in Tabelle 4.1 und 4.2 zusammengefasst. In den Abbildungen 4.1 und 4.2 sind die Verunreinigungen an der Oberfläche der Segmente graphisch dargestellt.

Messung	Segment	Verunreinigungskonzentration $[10^{16} \mathrm{m}^{-3}]$
Hersteller	hinten (6)	0.42
Hersteller	vorne (1)	1.74
Pulser	Komplett	0.284 ± 0.061
Pulser	A1	0.209 ± 0.045
Pulser	A2	0.314 ± 0.067
Pulser	A3	0.369 ± 0.079
Pulser	A4	0.399 ± 0.085
Pulser	A5	0.358 ± 0.077
Pulser	A6	0.3 ± 0.064
Pulser	B1	0.192 ± 0.041
Pulser	B2	0.275 ± 0.059
Pulser	В3	0.313 ± 0.067
Pulser	B4	0.332 ± 0.071
Pulser	В5	0.333 ± 0.071
Pulser	В6	0.229 ± 0.049
Pulser	C1	0.213 ± 0.046
Pulser	C2	0.261 ± 0.056
Pulser	C3	0.287 ± 0.061
Pulser	C4	0.323 ± 0.069
Pulser	C5	0.341 ± 0.073
Pulser	C6	0.244 ± 0.052
Pulser	D1	0.199 ± 0.043
Pulser	D2	0.298 ± 0.064
Pulser	D3	0.363 ± 0.078
Pulser	D4	0.385 ± 0.082
Pulser	D5	0.393 ± 0.084
Pulser	D6	0.326 ± 0.07
Pulser	E1	0.19 ± 0.041
Pulser	E2	0.258 ± 0.055
Pulser	E3	0.297 ± 0.063
Pulser	E4	0.319 ± 0.068
Pulser	E5	0.307 ± 0.066
Pulser	E6	0.252 ± 0.054
Pulser	F1	0.188 ± 0.04
Pulser	F2	0.302 ± 0.065
Pulser	F3	0.358 ± 0.077
Pulser	F4	0.384 ± 0.082
Pulser	F5	0.355 ± 0.076
Pulser	F6	0.322 ± 0.069

Tabelle 4.1: Verunreinigungskonzentration für Detektor C
006, gemessen bei einer Spannung von $10\,\mathrm{V}$

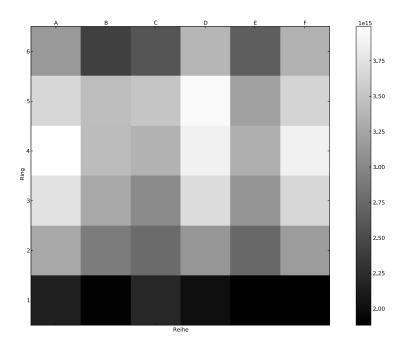


Abbildung 4.1: Bestimmte Verunreinigungskonzentration pro $\rm m^3$ an der Oberfläche des Detekors C006, gemessen bei einer Spannung von $10\,\rm V$

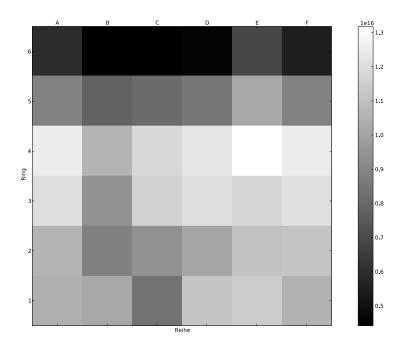


Abbildung 4.2: Bestimmte Verunreinigungskonzentration pro $\rm m^3$ an der Oberfläche des Detekors B005, gemessen bei einer Spannung von $10\,\rm V$

Messung	Segment	Verunreinigungskonzentration $[10^{16} \mathrm{m}^{-3}]$
Hersteller	hinten (6)	0.43
Hersteller	vorne (1)	1.51
Pulser	A0sum	0.876 ± 0.241
Pulser	A1	0.992 ± 0.273
Pulser	A2	1.008 ± 0.277
Pulser	A3	1.182 ± 0.325
Pulser	A4	1.162 ± 0.325 1.235 ± 0.34
Pulser	A5	0.827 ± 0.227
Pulser	A6	0.627 ± 0.227 0.556 ± 0.153
Pulser	B1	0.957 ± 0.163 0.957 ± 0.263
Pulser	$\begin{array}{c} B1 \\ B2 \end{array}$	0.937 ± 0.203 0.822 ± 0.226
Pulser	B3	0.822 ± 0.220 0.885 ± 0.243
Pulser	B4	0.005 ± 0.245 1.01 ± 0.278
Pulser	B5	0.716 ± 0.278 0.716 ± 0.197
Pulser	B6	0.710 ± 0.197 0.449 ± 0.123
Pulser	 С1	0.449 ± 0.123 0.774 ± 0.213
Pulser	C1 $C2$	0.774 ± 0.213 0.88 ± 0.242
Pulser	C3	1.13 ± 0.311
Pulser	C4	1.148 ± 0.316
Pulser	C5	0.749 ± 0.206
Pulser	C6	0.442 ± 0.122
Pulser	D1	$1.074\pm\ 0.295$
Pulser	D2	0.948 ± 0.261
Pulser	D3	1.18 ± 0.324
Pulser	D4	1.211 ± 0.333
Pulser	D5	0.79 ± 0.217
Pulser	D6	$0.467 \pm\ 0.128$
Pulser	E1	1.107 ± 0.304
Pulser	E2	1.063 ± 0.292
Pulser	E3	$1.142\pm\ 0.314$
Pulser	E4	1.318 ± 0.362
Pulser	E5	0.96 ± 0.264
Pulser	E6	0.631 ± 0.173
Pulser	F1	1.004 ± 0.276
Pulser	F2	1.075 ± 0.295
Pulser	F3	1.194 ± 0.328
Pulser	F4	1.233 ± 0.339
Pulser	F5	$0.832 \pm\ 0.229$
Pulser	F6	0.525 ± 0.144

Tabelle 4.2: Verunreinigungskonzentration für Detektor B005, gemessen bei einer Spannung von $10\,\mathrm{V}$

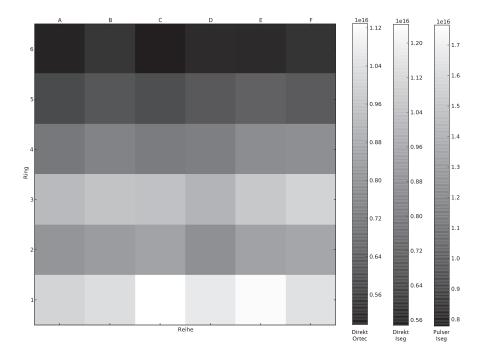


Abbildung 4.3: Verunreinigungskonzentration pro m $^{-3}$ an der Oberfläche des Detekors S002, gemessen bei einer Spannung von $10\,\mathrm{V}$

Für Detektor S002 wurden unterschiedliche Messverfahren ausgewertet. Zwei direkte Messungen und eine Pulsermessung. Die Verhältnisse der Kapazitäten der Segmente stammen aus der Pulsermessung. Die Herstellerangaben für Detektor S002 sind $0.51 \times 10^{16} \,\mathrm{m}^{-3}$ für den hinteren und $1.8 \times 10^{16} \,\mathrm{m}^{-3}$ für den vorderen Teil des Detektors. Alle Messwerte sind in Tabelle 4.3 zusammengefasst. Abbildung 4.3 stellt die Ergebnisse graphisch dar.

Die Aussagen in diesem Kapitel beziehen sich auf dünne Verarmungsschichten unter den Oberflächen der Kristalle. Je höher die angelegte Spannung, umso größer wird die Verarmungszone. Dabei wird jedoch die Näherung einer planaren Diode nicht mehr erfüllt.

4.1.2 Näherung eines Zylinderkondensators

Die hinteren Ringe 3, 4, 5 und 6 des AGATA-Detektors S002 können sehr gut mit einem koaxialen Detektor genähert werden. In Abschnitt 2.2 wurde bereits die analytische Beschreibung zur Bestimmung der Verunreinigungskonzentration für die Zylindergeometrie erarbeitet (siehe Abbildung 2.4). Neben den Kapazitäten wird dabei auch die Änderung der Kapazität bei Änderung der Spannung benötigt. Da nur diskrete Messpunkte vorliegen, musste die Steigung aus diesen bestimmt werden. Für den ersten Messpunkt C_1

Segment	Verunreinigungskonzentration [10 ¹⁶ m ⁻³]			
	Direkt Ortec	Direkt Iseg	Pulser Iseg	
sum	0.74 ± 0.007	0.815 ± 0.163	1.157 ± 0.262	
A1	1.007 ± 0.01	1.109 ± 0.222	1.575 ± 0.356	
A2	0.814 ± 0.008	0.897 ± 0.179	1.273 ± 0.288	
A3	0.927 ± 0.009	1.021 ± 0.204	1.45 ± 0.328	
A4	0.718 ± 0.007	0.791 ± 0.158	1.123 ± 0.254	
A5	0.589 ± 0.006	0.649 ± 0.13	0.922 ± 0.208	
A6	0.508 ± 0.005	0.56 ± 0.112	0.795 ± 0.18	
B1	1.036 ± 0.01	1.141 ± 0.228	1.62 ± 0.366	
B2	0.837 ± 0.008	0.922 ± 0.184	1.309 ± 0.296	
В3	0.956 ± 0.01	1.052 ± 0.21	1.494 ± 0.338	
B4	0.754 ± 0.008	0.83 ± 0.166	1.179 ± 0.267	
B5	0.623 ± 0.006	0.686 ± 0.137	0.974 ± 0.22	
B6	0.546 ± 0.005	0.602 ± 0.12	0.854 ± 0.193	
C1	1.129 ± 0.011	1.243 ± 0.249	1.765 ± 0.399	
C2	0.858 ± 0.009	0.945 ± 0.189	1.342 ± 0.304	
C3	0.95 ± 0.01	1.046 ± 0.209	1.485 ± 0.336	
C4	0.729 ± 0.007	0.803 ± 0.161	1.141 ± 0.258	
C5	0.603 ± 0.006	0.664 ± 0.133	0.943 ± 0.213	
C6	0.497 ± 0.005	0.548 ± 0.11	0.778 ± 0.176	
D1	1.07 ± 0.011	1.178 ± 0.236	1.673 ± 0.378	
D2	0.797 ± 0.008	0.877 ± 0.175	1.246 ± 0.282	
D3	0.914 ± 0.009	1.006 ± 0.201	1.429 ± 0.323	
D4	0.739 ± 0.007	0.814 ± 0.163	1.156 ± 0.261	
D5	0.629 ± 0.006	0.693 ± 0.139	0.983 ± 0.222	
D6	0.523 ± 0.005	0.576 ± 0.115	0.818 ± 0.185	
E1	1.119 ± 0.011	1.232 ± 0.246	1.749 ± 0.396	
E2	0.855 ± 0.009	0.942 ± 0.188	1.338 ± 0.303	
E3	0.975 ± 0.01	1.074 ± 0.215	1.525 ± 0.345	
E4	0.787 ± 0.008	0.867 ± 0.173	1.231 ± 0.278	
E5	0.648 ± 0.007	0.714 ± 0.143	1.013 ± 0.229	
E6	0.521 ± 0.005	0.574 ± 0.115	0.815 ± 0.184	
F1	1.047 ± 0.011	1.153 ± 0.231	1.637 ± 0.37	
F2	0.867 ± 0.009	0.955 ± 0.191	1.356 ± 0.307	
F3	1.004 ± 0.01	1.106 ± 0.221	1.571 ± 0.355	
F4	0.794 ± 0.008	0.874 ± 0.175	1.241 ± 0.281	
F5	0.638 ± 0.006	0.702 ± 0.14	0.997 ± 0.225	
F6	0.541 ± 0.005	0.596 ± 0.119	0.846 ± 0.191	

Tabelle 4.3: Verunreinigungskonzentration für Detektor S
002, gemessen bei einer Spannung von $10\,\mathrm{V}$ für unterschiedliche Messungen

bei $V = V_1$ wurde der einfache Differenzquotient zum nächsten Messpunkt verwendet.

$$\frac{dC_1}{dV} = \frac{C_1 - C_2}{V_1 - V_2} \tag{4.3}$$

Für die weiteren Messpunkte, bis auf den letzten, wurde der mittlere Wert zwischen den beiden Differenzquotienten genommen.

$$\frac{dC_i}{dV} = \frac{\frac{C_i - C_{i+1}}{V_i - V_{i+1}} + \frac{C_{i-1} - C_i}{V_{i-1} - V_i}}{2} \tag{4.4}$$

Für den letzten Messpunkt nimmt man analog zu den ersten lediglich den vorherigen Messwert. Weiterhin kann man mit Hilfe der Formel (2.22) die Ausdehnung der Verarmungszone in Abhängigkeit von der gemessenen Kapazität C bestimmen. Sie ist gegeben durch den sich ändernden Innenradius R_1 des Zylinders.

$$R_1 = R_2 e^{-\frac{2\pi\epsilon H}{C}} \tag{4.5}$$

Für die folgende Analyse wurden die Messdaten der Pulsermessung des Detektors S002 genutzt. In Abbildung 4.4 ist der Innenradius R_1 für alle Segmente der hinteren vier Ringe für unterschiedliche Spannungen dargestellt. Für kleine Spannungen ist die Geometrie des Detektors gut zu erkennen, so haben die Segmente des dritten Ringes den kleinsten Innenradius und die des sechsten Ringes den größten Innenradius. Mit steigender Spannung wird die Verarmungszone immer größer bis der gesamte Detektor verarmt ist. Die Messungen mit höheren Spannungen ändern den Innenradius nicht weiter und sind in dem Graphen nicht dargestellt. Die innere Bohrung der Hauptelektrode hat einen Radius von 5 mm. Die Kontaktierung der Hauptelektrode reicht 0,5 bis 1,5 mm in den Detektor, sodass man von 5,5 bis 6,5 mm minimalen Innenradius ausgehen kann. Dies zeigt, dass die gemachten Messungen für höhere Spannungen konsistente Ergebnisse liefern und die Größe der Verarmungszone mit den geometrischen Gegebenheiten übereinstimmen. Die bestimmten Verunreinigungskonzentrationen sind in Abhängigkeit von dem Innenradius in Abbildung 4.5 dargestellt. Die Graphen zeigen von oben nach unten die Segmente der Ringe 6, 5, 4 und 3. Bei dem dritten und vierten Ring sind die Werte für die Messung bei 10 V nicht mehr innerhalb des Bereiches des Graphen. Für diese Ringe ist die Näherung eines Zylinders nahe der Oberfläche nicht besonders gut, da die Segmente dort nahezu eckig sind. Die Messreihen oberhalb von 2250 V sind in dieser Abbildung nicht dargestellt, da der Detektor bereits vollkommen durchgezogen ist. Wie man in dem Graphen erkennen kann, steigen die Verunreingungskonzentrationen für Innenradien kleiner als 10 mm stark an. Hier ist anzumerken, dass sobald die Ränder erreicht sind, die Rechnungen keinen Sinn mehr machen und die Verunreinigungskonzentration sprunghaft ansteigt. Da bei den Messungen immer nur ganze Segmente betrachtet werden, kann es sein, dass ein Bereich des Segmentes bereits diesen Rand erreicht hat, während ein anderer Teil noch etwas mehr Spannung benötigt. Die leichten Knicke bei niedrigen Spannungen, also bei großen Innenradien, werden, wie auch der Versatz des ersten Messwertes, durch die Näherung der Zylindergeometrie verursacht. In dem Abschnitt 4.2.3 wird eine Methode zur Korrektur dieser Abweichungen vorgestellt. Die kleine Delle

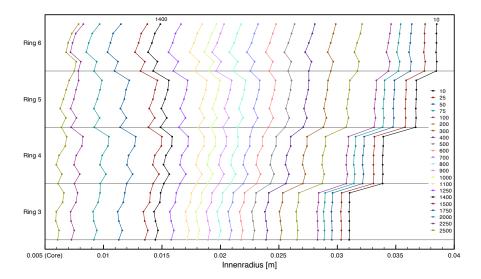


Abbildung 4.4: Ausdehnung der Verarmungszone in Abhängigkeit von der angelegten Hochspannung, die Ausdehnung der Verarmungszone nimmt mit steigender Spannung und entsprechend sinkendem Innenradius zu

des Verlaufs bei einem Innenradius von 20 mm im sechsten Ring könnte von der Passivierung stammen. Zu beachten ist vor allem der Verlauf der Verunreinigung von dem sechsten zu dem vierten Ring. Die bestimmten Werte liegen innerhalb der Spezifikation des Herstellers und zeigen einen entsprechenden Verlauf.

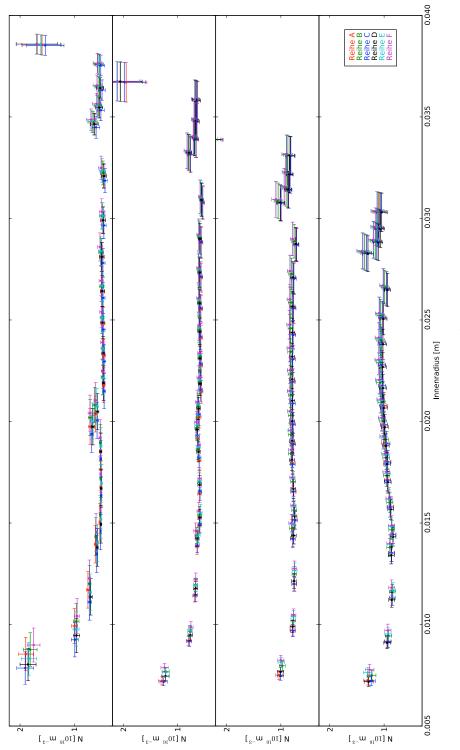


Abbildung 4.5: Verunreinigungskonzentration pro m^{-3} der Ringe 6 (oben), 5, 4 und 3 (unten)

4.2 Simulationen

4.2.1 Verfahren

Die Verteilungen von Löchern und Elektronen in Halbleitern werden in einem eindimensionalen Modell durch folgende Gleichungen beschrieben [28].

$$\frac{d^2\varphi}{dx^2} = -\frac{e}{\epsilon}[N(x) - n(x) + p(x)] \quad (4.6)$$

$$J_p = -eD_p \frac{dp}{dx} - e\mu_p p \frac{d\varphi}{dx} \quad (4.7)$$

$$J_n = eD_n \frac{dn}{dx} - e\mu_n n \frac{d\varphi}{dx}$$
 (4.8)

$$0 = \Re_{p}(x) - \frac{1}{e} \frac{dJ_{p}}{dx}$$

$$0 = \Re_{n}(x) - \frac{1}{e} \frac{dJ_{n}}{dx}$$

$$J_{T} = J_{p} + J_{n}$$

$$(4.10)$$

$$0 = \Re_n(x) - \frac{1}{c} \frac{dJ_n}{dx}$$
 (4.10)

$$J_T = J_p + J_n (4.11)$$

Elektrostatisches Potential

eElementarladung

Dieelektrische Konstante des Materials

NIonisierte Atome der Verunreinigung

Mobile Elektronendichte n

Mobile Lochdichte p

 $J_{n,p}$ Stromdichte der Elektronen bzw. der Löcher

Gesamte Stromdichte

 $D_{n,p}$ Diffusionskonstante für Elektronen bzw. Löcher

 $\Re_{n,p}$ Rekominationsrate der Elektronen bzw. der Löcher

Mobilität der Elektronen bzw. der Löcher

Die AGATA-Detektoren bestehen aus n-Typ-HPGe-Material und somit sind die Löcher die Minoritätsladungsträger. Wir vernachlässigen diese [29] und setzen p=0, wodurch Gleichung (4.7) und (4.9) herausfallen. Diffusionseffekte bewirken ein leichtes Verschmieren des Ubergangs der Verarmungszone zu nicht verarmter Zone. Die Ausbreitung dieser Verschmierung ist in der Größenordnung der Debye-Länge ($\sim 100 \,\mu\mathrm{m}$) [30, 31] und wird in der Simulation nicht beachtet. Der Leckstrom über die Verarmungszone ist, wie in Abschnitt 3.1.3 gezeigt, sehr gering und wird mit Null gleichgesetzt [32]. Aus (4.8) ergibt sich mit $J_n = 0$ und dem Vernachlässigen der Diffusion

$$e\mu_n n \frac{d\varphi}{dx} = e\mu_n nE = 0 (4.12)$$

Die Elementarladung e und die Beweglichkeit der Elektronen μ_n sind konstant, somit muss entweder das Elektrische Feld E oder die mobile Elektronendichte n gleich Null sein. Wie in Abbildung 2.3b dargestellt, verschwindet das elektrische Feld außerhalb der Vearmungszone. Innerhalb der Verarmungszone ist das elektrische Feld nicht Null und daher muss n=0 gelten. Die entwickelten Computersimulationen [33] basieren auf einem iterativen Verfahren zur Lösung der Poissongleichung (4.6) in der Verarmungszone mit n(x) = p(x) = 0.

$$\nabla^2 \varphi = -\frac{eN(x)}{\epsilon} = -\frac{\rho}{\epsilon} \tag{4.13}$$

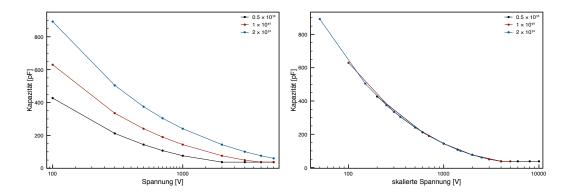


Abbildung 4.6: Ergebnisse der Simulation für drei Werte der Verunreinigungskonzentration ohne skalierte Spannung (links) und mit skalierter Spannung (rechts)

Die Geometrie des Detektors wird in ein gleichmäßiges dreidimensionales Gitter von 0,5 mm Kantenlänge aufgeteilt. Für jeden Raumpunkt wird definiert, ob er Teil einer Elektrode oder des Detektormaterials mit einer Verunreinigungskonzentration ist. Für eine gegebene Spannung variiert die Simulation die Oberfläche der noch nicht verarmten Zone des Detektors. Dann berechnet sie die Lösung der Poissongleichung und entscheidet auf Grundlage der Potentialdifferenz an der Oberfläche, ob diese expandiert oder verkleinert werden soll. Sobald sich ein Gleichgewicht eingestellt hat, stoppt die Simulation.

Um die Qualität der Simulation beurteilen zu können, wurde die Verunreinigungskonzentration variiert. Bei halber Verunreinigungskonzentration sollte der Detektor bei halber Spannung voll durchgezogen sein. Entsprechend gilt für eine doppelt so hohe Verunreinigung, dass eine doppelt so hohe Spannung benötigt wird. Simulationen mit Verunreinigungskonzentrationen von 5×10^{15} , 1 und 2×10^{16} Atome pro Kubikmeter wurden durchgeführt und die Ergebnisse sind in Abbildung 4.6 dargestellt. Wie man gut erkennen kann, skalieren die Simulationen wie erwartet. Sobald sich die Kapazität des Detektors nicht mehr ändert, ist das Detektorvolumen vollständigt verarmt. In Abbildung 4.7 sind die noch nicht verarmten Bereiche des Detektors, wie sie die Simulation berechnet hat, für unterschiedliche Spannungen dargestellt.

4.2.2 Erste Simulationen

Aus den für den Detektor S002 in Abschnitt 4.1.1 gewonnenen Verunreinigungskonzentrationen der direkten Messung mit dem Iseg-Modul wurden solche für den gesamten Detektor erzeugt. Hierbei wurde für alle Segmente eine einheitliche mittlere Verunreinigungskonzentration an der Hauptelektrode angenommen und festgesetzt. Sie entspricht der mittleren Verunreinigungskonzentration des gesamten Detektors. Um eine glatte Verteilung der Verunreinigungskonzentration über den ganzen Detektor zu erreichen, wurden Gewichtungsfelder¹ aller Elektroden erstellt [34]. Diese wurden mit der jeweiligen

¹Weighting Fields

Abbildung 4.7: Durch Simulation bestimmte nicht verarmte Bereiche des Detektors für unterschiedliche Spannungen und einer Verunreinigungskonzentration von 10^{16} Atomen pro Kubikmeter

Verunreinigungskonzentrationen multipliziert und aufaddiert. Für alle Messreihen, die sowohl direkt als auch mit dem Pulser durchgeführt wurden, sind Simulationen erstellt worden. Aus den Ergebnissen der Simulationen wurden die Kapazitäten bestimmt. Der Vergleich zwischen den Simulationen und den Messungen zeigt noch gewisse Unterschiede. Um die relativen Abweichungen beurteilen zu können, wurde der durch die Simulation bestimmte Wert der Kapazität des jeweiligen Segmentes durch den gemessenen Wert dividiert. In Abbildung 4.8 sind die Ergebnisse für unterschiedliche Spannungen gegenübergestellt.

Abweichungen zeigen die Segmente des sechsten Ringes bei höheren Spannungen. Dabei ist anzumerken, dass bei den Simulationen die unbekannten Eigenschaften der Passivierung nicht berücksichtigt werden können. Die Analyse in 4.1.2 deutet darauf hin, dass der Lithiumkontakt der Hauptelektrode 1 bis 2 mm in den Detektor reicht. Dies wurde bei der Simulation nicht berücksichtigt. Die Annahme, dass zur Hauptelektrode die Verunreinigung einen konstanten mittleren Wert annimmt, ist nach der Analyse in 4.1.2 zu hinterfragen. In zukünftigen Rechnungen gilt es die Randbedingungen der Simulationen an die Resultate der Analysen anzupassen und erneut durchzuführen.

4.2.3 Korrekturen der Näherung

Die Näherung einer Zylindersymmetrie zur Bestimmung der Verunreinigungskonzentration aus Abschnitt 4.1.2 ist nicht für alle untersuchten Ringe (3, 4, 5 und 6) gleich gut. Es ist schwierig, die Abweichungen von der Näherung direkt aus der Geometrie des Detektors abzuleiten. Aus diesem Grund wurde eine Simulation für eine homogene Verunreinigung von 10¹⁶ Atomen pro Kubikmeter erstellt und dann mit der Methode aus Abschnitt 4.1.2 untersucht. Wenn die Näherung perfekt wäre, so müsste für alle Radien eine Verunreinigungskonzentration von 10¹⁶ Atomen pro Kubikmeter bestimmt werden. Die Graphen in Abbildung 4.9 zeigen die Ergebnisse. Man kann die entstandenen Abweichungen gut erkennen, welche durch die Näherung einer Zylindersymmetrie entstehen. Sie zeigen sich vor allem bei größeren Innenradien. Die Effekte bei kleinen Innenradien enstehen durch die Mittelung über die Höhe des gesamten Segments. Man muss beachten, dass hierbei eine korrekte Simulation und Bestimmung der Kapazitäten

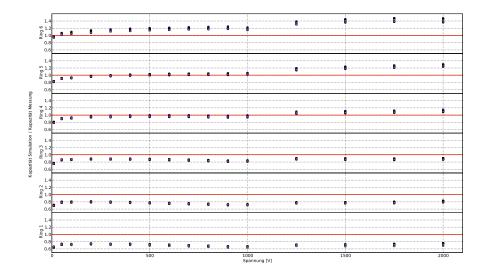


Abbildung 4.8: Durch Simulation bestimmte Kapazität der Segmente geteilt durch gemessene Kapazität (Farbcode wie in Abb. 4.5)

vorrausgesetzt wird.

Ohne viel Aufwand kann jetzt die Analyse der tatsächlichen Messung korrigiert werden, indem man das Ergebnis einer Spannung durch die Abweichung der obigen Analyse einer homogenen Verunreinigungskonzentration dividiert. Dies ist eine einfache Korrektur. Hierbei ist zu beachten, dass man im Prinzip besser die jeweiligen Positionen und nicht die Spannungen als Referenz nutzen sollte. Das Ergebnis dieser einfachen Korrektur ist in Abbildung 4.10 dargestellt.

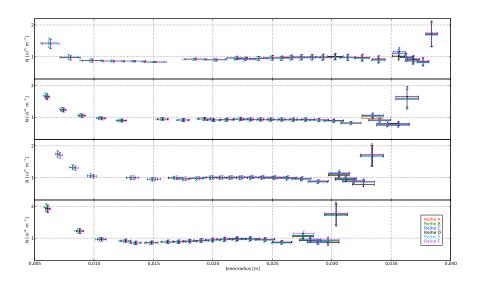


Abbildung 4.9: Analyse einer Simulation mit einer homogenen Verunreinigungskonzentration von 10^{16} Atomen pro Kubikmeter unter Annahme der Zylindersymmetrie, Abweichungen entstehen durch die Näherung der Zylindersymmetrie und der Ausdehnung der Segmente

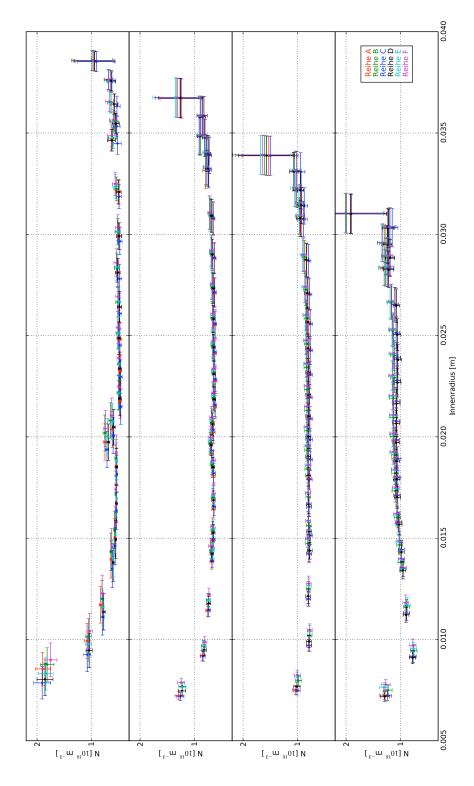


Abbildung 4.10: Korrigierte Verunreinigungskonzentration pro $\rm m^{-3}$ der Ringe 6 (oben), 5, 4 und 3 (unten)

5 Zusammenfassung

Der Erfolg des AGATA-Projektes hängt wesentlich von einer sehr guten Rückverfolgung der Gamma-Quanten (Gamma-Ray-Tracking) ab. Diese basiert auf einer guten Auflösung bezüglich des Ortes der Interaktion der Gamma-Quanten, die durch die Segmentierung des Detektors und die Pulseformanalyse garantiert werden soll. Die Pulseformanalyse basiert auf Datensätzen, welche durch Messung und Computersimulationen erzeugt und aufeinander abgeglichen werden. Die Computersimulationen wiederum benötigen als Parameter die physikalischen Eigenschaften des Detektors, unter anderem den Grad der Verunreinigung der einzelnen Segmente. Diese Arbeit beschreibt die nicht invasive Kapazitäts-Spannungs-Analyse zur Untersuchung und Bestimmung der Verunreinigungskonzentration von großvolumigen Halbleiterdioden.

Für diese Analyse wurde die Kapazität des Detektors und seiner einzelnen Segmente in Abhängigkeit von der angelegten Sperrspannung vermessen. Hierfür wurde in dieser Arbeit eine Methode entwickelt, die neben dem Pulser des Vorverstärkers der Hauptelektrode, der vorhandenen digitalen Elektronik und den bereits existierenden Test- und Tripelkryostaten keine weiteren Apparate oder Aufbauten benötigt. Da es sich hierbei um eine relative Messung handelt, werden absolute Werte der Kapazität genutzt. Dabei kann man auf die Messungen des Herstellers zurückgreifen oder über numerische Berechnungen auf Grundlage der jeweiligen Geometrie die Kapazität des völlig verarmten Detektors bestimmen. Ein elektrisches Modell des Detektors wurde erarbeitet. Die Parameter des Modells und deren Einfluss auf die Messung wurden untersucht. So wurde die Kennlinie des Detektors zum ersten Mal ausgemessen und das Prinzip der Pulser-Messung erfolgreich mit Hilfe einer Ersatzschaltung getestet.

Insgesamt wurden im Rahmen dieser Arbeit die sechs Detektoren A003, B003, B005, C005, C006 und S002 untersucht. Bei A003 und B003 wurde die Gesamtkapazität, bei den anderen Detektoren zusätzlich die Kapazität aller Segmente ausgemessen und ausgewertet. Um die Qualität der Methode zu beurteilen, wurde eine absolute Messung der Kapazität des Detektor S002 durchgeführt. Die Messungen der Pulsermethode und der direkten Methode stimmen in großen Teilen gut überein. Schwierigkeiten traten vor allem bei der direkten Messung der Segmente auf. In Zukunft werden die Eigenschaften der Segmente mit einem Segment–Pulser näher untersucht.

Die Messdaten der Detektoren B005, C006 und S002 wurden für kleine Spannungen mit einer planaren Diode angenähert und analysiert. Alle Resultate liegen sehr nahe an den Herstellerangaben. Die Daten des Detektors S002 sind unter der Annahme einer zylindrischen Form der Segmentringe 3, 4, 5 und 6 untersucht worden. Auch hier sind die Resultate gut verträglich mit den der Herstellerangaben. Erste Computersimulationen wurden erfolgreich durchgeführt. Die leicht abweichenden Ergebnisse der Simulation und der Messungen müssen noch genauer untersucht werden, wobei ein wichtiger An-

5 Zusammenfassung

satzpunkt die realen geometrischen Gegebenheiten der Detektoren darstellen. Mit Hilfe der Simulation einer homogenen Verunreinigungskonzentration konnten die Abweichungen, die durch die Näherung der Zylindersymmetrie entstehen, in einem ersten einfachen Verfahren korrigiert werden. Die bestimmten Verunreinigungskonzentrationen werden in Zukunft mit den Daten und Erkenntnissen der Pulseformanalyse abgeglichen.

Abschließend kann man sagen, dass die Bestimmung der Verunreinigungskonzentration mit Hilfe der CV-Analyse für großvolumige segmentierte HPGe-Detektoren möglich ist.

Literaturverzeichnis

- [1] AGATA: Official Website. http://www-w2k.gsi.de/agata,
- [2] GRETA: Official Website. http://greta.lbl.gov,
- [3] EBERTH, J.; SIMPSON, J.: From Ge(Li) detectors to gamma–ray tracking arrays—50 years of gamma spectroscopy with germanium detectors. In: *Progress in Particle and Nuclear Physics* 60 (2008), S. 283–337
- [4] Lee, I. Y.: Gamma-ray tracking detectors. In: Nuclear Instruments and Methods in Physics Research A (1999), Nr. 422, S. 195–200
- [5] LOPEZ-MARTENS, A.; HAUSSCHILD, K.; KORICHI, A.; ROCCAZ, J.; THIBAUD, J-P.: γ-ray tracking algorithms: a comparison. In: Nuclear Inst. and Methods in Physics Research A 533 (2004), S. 454–466
- [6] Nelson, L.; Dimmock, M.; Boston, A.; Boston, H.: Characterisation of an AGATA symmetric prototype detector. In: Nuclear Inst. and Methods in Physics Research A 573 (2006), Januar, S. 153–156
- [7] CRESPI, F.C.L.; CAMERA, F.; MILLION, B.; SASSI, M.; WIELAND, O.; BRACCO, A.: A novel technique for the characterization of a HPGe detector response based on pulse shape comparison. In: Nuclear Instruments and Methods in Physics Research A 593 (2008), Nr. 3, S. 440–447
- [8] TASHENOV, S.; ENGERT, T.; GERL, J. u. a.: AGATA detector Scanning at GSI. 6th AGATA week. http://agata.lnl.infn.it/AgataWeek2007. Version: 200
- [9] SCHLARB, M.: Comparison of JASS simulation and scanning data. 6th AGATA week, Legnaro 2007 6th AGATA week, Legnaro 2007. http://agata.lnl.infn.it/AgataWeek2007. Version: 2007
- [10] BOSTON, A.: AGATA coincidence measurements and initial comparison with MGS. MGS Workshop, April 2005. http://mgs2005.in2p3.fr. Version: April 2005
- [11] BRUYNEEL, B.; BIRKENBACH, B.: Automated optimization of detector simulation. 6th AGATA week, Legnaro 2007. http://agata.lnl.infn.it/AgataWeek2007. Version: 2007
- [12] BRUYNEEL, B.; REITER, P.; PASCOVICI, G.: Characterization of large volume HPGe detectors. Part I: Electron and hole mobility parameterization. In: Nuclear Inst. and Methods in Physics Research A (2006), Nr. 569, S. 764–773

- [13] BRUYNEEL, B.; REITER, P.; PASCOVICI, G.: Characterization of large volume HPGe detectors. Part II: Experimental Results. In: Nuclear Inst. and Methods in Physics Research A (2006), Nr. 569, S. 764–773
- [14] BRUYNEEL, B.; REITER, P.; WIENS, A.; EBERTH, J.; HESS, H.; PASCOVICI, G.; WARR, N.; WEISSHAAR, D.: Crosstalk properties of 36-fold segmented symmetric hexagonal HPGe detectors. In: Nuclear Inst. and Methods in Physics Research A 599 (2009), S. 196–208
- [15] Runyan, W. R.; Shaffner, T. J.: Semiconductor measurements and instrumentation. 2. McGraw-Hill, 1998
- [16] STANDARDS, National I.; TECHNOLOGY: The NIST Reference on Constants, Units, and Uncertainty. http://physics.nist.gov/cuu/Constants/. Version: 2009, Abruf: 2009
- [17] Knoll, Glenn F.: Radiation Detection and Measurement. Second. John Wiley & Sons, 1989
- [18] HESS, Herbert: Energieauflösung und Effizienz der ersten 36-fach segmentierten HPGe-Detektoren für das AGATA-Spektrometer. Diplomarbeit, 2007
- [19] Wiens, A.; Hess, H.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Lersch, D.; Pascovici, G.; Reiter, P.; Thomas, H.G.: The AGATA triple cluster detector. In: *Nuclear Instruments and Methods in Physics Research A* (To be published)
- [20] AGGARWAL, R. L.; FISHER, P.; MOURZINE, V.; RAMDAS, A. K.: Excitation spectra of Lithium Donors in Silicon and Germanium. In: *Physical Review* 138 (1964), May, Nr. 3A, S. 882 – 893
- [21] PASCOVICI, G.; PULLIA, A.; ZOCCA, F.; BRUYNEEL, B.: Low noise, dual gain preamplifier with built in spectroscopic pulser for highly segmented high-purity germanium detectors. In: Brown, M. P. (Hrsg.); Austin, K. (Hrsg.): WSEAS Conference. Bucharest, Romania, 2008
- [22] Pullia, A.; Zocca, F.; Pascovici, G.; Boiano, C.; Bassini, R.: An advanced preamplifier for highly segmented germanium detectors. In: *IEEE Transactions on Nuclear Science* 53 (2006), Nr. 5, S. 2869–2875
- [23] Wiens, A.: Systematische Untersuchungen des Übersprechverhaltens von hochsegmentierten HPGe-Detektoren. Diplomarbeit, 2007
- [24] Brun, R. u.a.: ROOT. Version 5.18/00b. http://root.cern.ch
- [25] Braun, N.; Kotthaus, T.; Schulze, R.: *HDTV Nuclear Spectrum Analysis Tool.* http://www.ikp.uni-koeln.de. Version: 2009
- [26] WILLIAMS, T.; KELLEY, C.: Gnuplot an interactive plotting program. version 4.2 patchlevel 2. http://www.gnuplot.info

- [27] BÖGE, W.; KEMNITZ, A.: Vieweg-Handbuch Elektrotechnik. 4. Vieweg Wiesbaden, 2007 (Studium und Praxis)
- [28] ROOSBROECK, W. V.: In: Bell System Technical Journal 29 (1950), Nr. 560
- [29] Kennedy, D. P.; Murley, P. C.; Kleinfelder, W.: On the Measurement of Impirity Atom Distributions in Silicon by the Differential Capacitance Technique. In: *IBM J. Res. Develop.* (1969)
- [30] Blood, P.: Capacitance-voltage profiling and the characterisation of III-IV semi-conductors using electrolyte barriers. In: Semicond. Sci. Technol. 1 (1986), S. 7–27
- [31] LJUNGVALL, J.; NYBERG, J.: A study of fast neutron interactions in high-purity germanium detectors. In: *Nuclear Inst. and Methods in Physics Research A* 546 (2005), S. 553–573
- [32] Nichols, K. G.; Vernon, E. V.; Sims, G. D. (Hrsg.): Transistor Physics. Chapman and Hall LTD, 1966
- [33] BIRKENBACH, B.; BRUYNEEL, B.: Crosstalk Analysis of ATC2 and impurity measurements. 8th AGATA week Cologne 2009. http://www.ikp.uni-koeln.de/agataweek09. Version: 2009
- [34] Bruyneel, Bart: Characterization of Segmented Large Volume, High Purity Germanium Detectors, Institut für Kernphysik der Universität zu Köln, Diss., 2006

Literatur verzeichn is

Tabellenverzeichnis

3.1	Amplitude mit und ohne einem parallem Widerstand R_p von 1 G Ω	34
3.2	Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Span-	
	nungen für C005(* gemessen mit 50 Ω -Abschluss, ** mit 1M Ω -Abschluss)	35
3.3	Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Span-	
	nungen für S002, C006 und B005(* gemessen mit 50Ω -Abschluss, ** mit	
	$1 \text{M} \Omega - \text{Abschluss}$)	37
3.4	Einstellungen des Pulsers, Amplitude des Pulsers und vermessene Spannungen für A003 und B003(* gemessen mit 50Ω -Abschluss, ** mit $1M\Omega$ -	
	(9	38
9.5	Abschluss)	38
3.5	Durch Anpassen ermittelte Parameter, Messung mit * basieren auf Mes-	4.4
0.0	sungen mit dem digitalen Oszilloskop	44
3.6	Direkte Messungen der Kapazität von S002	52
3.7	Messung (M), Versatz (V) und Differenz (D = M - V) der Segmente A1,	- 1
	A2, A3, A4, A5 und A6 von S002	54
3.8	Vergleich der Summe der Segmente, der direkten Messung und der Pul-	
	sermessung für S002	56
4.1	Verunreinigungskonzentration für Detektor C006, gemessen bei einer Span-	
1.1	nung von 10 V	58
4.2	Verunreinigungskonzentration für Detektor B005, gemessen bei einer Span-	90
1.2	nung von 10 V	60
4.3	Verunreinigungskonzentration für Detektor S002, gemessen bei einer Span-	00
1.0	nung von 10 V für unterschiedliche Messungen	62
	nung von 10 v 1ur unterseineunene Wessungen	02
A.1	Größe der Oberflächen der Segmente der unterschiedlichen Geometrien	87
В.1	Messungen des Herstellers für die Detektoren S002, A003 und B003	89
B.2	Messungen des Herstellers für die Detektoren B005, C005 und C006	90
C.1	Ergebnisse der Messung mit Ersatzschaltung, A Amplitude des Vorver-	
	stärkersignals, t Anstiegszeit des Vorverstärkersignals	92
C.2	Messung des Pulsersignales mit digitalem Oszilloskop	96
C.3	Detektor S002 und B005	101
C.4	Detektor C005 und C006	130
C.5	Innenradius und Verunreinigung der hinteren vier Ringe des Detektors .	152

Tabellen verzeichn is

Abbildungsverzeichnis

1.1	Interaktionen von Gammastrahlung mit Materie	8
2.1 2.2 2.3	Bandstruktur eines Isolators und eines Halbleiters	12 13
2.4	sches Feld (b) und elektrisches Potential (c)	15 17
3.1	Die drei asymmetrischen Geometrien der AGATA-Detektoren: A-Typ (rot), B-Typ (grün) und C-Typ (blau)	20
3.2 3.3	Horizontale Aufteilung des Ge-Kristalls in Segmente und deren Notation Schematischer Aufbau eines Testkryostaten und Foto eines AGATA-Tripel-	21
9.4	Kryostaten mit transparenter Endkappe	21
3.4 3.5	Skizze des Detektormodells	2324
3.6	Messung des Stromes abhängig von der angelegten Spannung erzeugt mit dem Ortec-Spannungsmodul im Bereich von 0 bis 70 V	25
3.7	Leckstrom über den Kristall für unterschiedliche Spannungen erzeugt mit dem Ortec-Spannungsmodul	26
3.8	Leckstrom über den Kristall für unterschiedliche Spannungen mit dem IKP-Eigenbau-Spannungsmodul	27
3.9	Differentieller Widerstand in Abhängigkeit von der Spannung	28
3.10	Ersatzschaltbild der Segmentvorverstärker, des Detektors und des Haupt- elektrodenvorverstärkers	29
3.11	Ersatzschaltung für einen Detektor bestehend aus einem Widerstand in Reihe R_s , einem parallelen Widerstand R_p und der Detektorkapazität C_x	31
3.12	Abhängigkeit der Amplitude von der Kapazität, links unkorrigierte Kapazität, rechts korrigierte Kapazität	32
3.13	Prozentuale Abweichung für in Reihe geschaltete Widerstände bis 1000 Ω und Koeffizienten der Steigung der Abhängigkeit der Amplitude vom	20
9 1 4	Widerstand für unterschiedliche Kapazitäten	32
5.14	Pulserspektrum der Segmente A1, A2, A3, A4, A5 und A6 des Detektors C005 bei 3000 V Sperrspannung	36
3.15	Energiespektrum und angepasste Gaussfunktion der Hauptelektrode und des Segmentes C3 des Detektors C006 bei einer Sperrspannung von 300 V	38

3.16	Verlauf des Energieschwerpunkts des Pulsersignals der Hauptelektrode des Detektors C006 für unterschiedliche Sperrspannungen	39
3.17	Matrixdarstellung der Energieschwerpunkte des Pulsersignals aller Seg-	50
	mente des Detektors C006 für unterschiedliche Sperrspannungen in loga-	20
0.10	rithmischer Darstellung	39
3.18	Gesamtkapazität des Detektors C006 gegen Sperrspannung ermittelt durch	
	Normalisierung und korrgierter Normalisierung im Vergleich zur Messung	4.4
0.10	des Herstellers (Canberra)	41
3.19	Pulseramplituden des Vorverstärkers gegen vom Hersteller gemessene Ka-	40
2.20	pazität bei unterschiedlichen Spannungen für Detektor C006	42
3.20	Korrigierte Pulsermessung und korrigierte Herstellermessung (Canberra)	
	gegen angelegte Sperrspannung	43
3.21	Kapazitäten der Segmente des Detektors C006 in logarithmischer Darstel-	
	lung	44
3.22	Durch Anpassen ermittelte Kapazitäten der vom Hersteller eingesetzten	
	Koppelkondensatoren	45
	Gesamtkapazitäten aller Detektoren in doppelt logarithmischer Auftragung	46
3.24	Vergleich der Kapazitäten des Detektors A003 für die Messung mit der	
	digitalen XIA–Elektronik und dem digitalen LeCroy–Oszilloskop	47
3.25	Vergleich der Kapazitäten des Detektors B003 für die Messung mit der	
	digitalen XIA–Elektronik und dem digitalen LeCroy–Oszilloskop	47
	Kapazitäten der Segmente A1 bis A6 des Detektors B005	48
	Kapazitäten der Segmente A3 bis F3 des Detektors B005	48
3.28	Schaltbild einer Wechselstrombrücke	49
	Schematischer Aufbau der Schutzschaltung	51
3.30	Vergleich zwischen Pulsermessung und direkter Messung	55
3.31	Vergleich der Segment–Kapazitäten zwischen Pulsermessung und direkter	
	Messung	55
4.1	Bestimmte Verunreinigungskonzentration pro \mathbf{m}^3 an der Oberfläche des	
	Detekors C006, gemessen bei einer Spannung von 10 V	59
4.2	Bestimmte Verunreinigungskonzentration pro m ³ an der Oberfläche des	
	Detekors B005, gemessen bei einer Spannung von 10 V	59
4.3	Verunreinigungskonzentration pro m ⁻³ an der Oberfläche des Detekors	
	S002, gemessen bei einer Spannung von 10 V	61
4.4	Ausdehnung der Verarmungszone in Abhängigkeit von der angelegten	
	Hochspannung	64
4.5	Verunreinigungskonzentration pro m ⁻³ der Ringe 6 (oben), 5, 4 und 3	
	(unten)	65
4.6	Ergebnisse der Simulation für drei Werte der Verunreinigungskonzentra-	
	tion ohne skalierte Spannung (links) und mit skalierter Spannung (rechts)	67
4.7	Durch Simulation bestimmte nicht verarmte Bereiche des Detektors für	
	unterschiedliche Spannungen und einer Verunreinigungskonzentration von	
	10 ¹⁶ Atomen pro Kubikmeter	68

4.8	Durch Simulation bestimmte Kapazität der Segmente geteilt durch gemessene Kapazität (Farbcode wie in Abb. 4.5)	69
4.9	Analyse einer Simulation mit einer homogenen Verunreinigungskonzen-	00
	tration von 10^{16} Atomen pro Kubikmeter unter Annahme der Zylinder-	
	symmetrie	70
4.10	Korrigierte Verunreinigungskonzentration pro m ⁻³ der Ringe 6 (oben), 5,	
	4 und 3 (unten)	71
C.1	Spannungsversorgung zur Messung des Leckstroms	91
C.2	Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor	
	A003	97
C.3	Mit digitalem Oszilloskop gemessene Pulseramplitude gegen vom Herstel-	
	ler gemessene Kapazität für Detektor A003	97
C.4	Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor	
~ -	B003	98
C.5	Mit digitalem Oszilloskop gemessene Pulseramplitude gegen vom Herstel-	
Q 0	ler gemessene Kapazität für Detektor B003	98
C.6	Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor	00
0.7	B005	99
C.7	Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor	00
α	C005	99
C.8		100
	S002	LUU

Abbildungsverzeichnis

Danksagung

An dieser Stelle soll all denen gedankt werden, ohne die diese Arbeit nicht entstanden wäre.

- Prof. Dr. Peter Reiter für die Unterstützung, das Vertrauen und die Hilfe bei dieser Diplomarbeit
- Dr. Bart Bruyneel dessen Idee die Grundlage dieser Arbeit darstellt und ohne dessen tatkräftige Unterstützung diese Arbeit nicht möglich gewesen wäre
- Prof. Dr. Jan Jolie für den Einstieg in das Institut und das entgegengebrachte Vertrauen
- Dr. Jürgen Eberth und Dr. Gheorge Pascovici für Diskussionsbereitschaft, Hilfe und geteilte Erfahrung
- Herbert Hess, Andreas Wiens und Daniel Lersch für eine gute Zusammenarbeit und ständige Hilfe im Umgang mit sämtlichen Geräten
- Dr. Christoph Fransen für Hilfe und Unterstützung im Umgang mit technischen Geräten
- Ralf Schulze, Norbert Braun, Michael Pfeiffer und Stefan Heinze für gute Ratschläge und eine gute Zusammenarbeit
- Christoph Görgen, Guido Richardt und der gesamten Elektronikwerkstatt für die Entwicklung und schnelle Realisierung von Projekten
- Stefan Thiel, Thomas Rolke, Dirk Diefenbach und der gesamten Feinmechanik für die Hilfe und Unterstützung
- Sabrina Scholz für die Korrektur aller formaler Fehler
- und nicht zuletzt, meinen Eltern, Monika Schnittker und Hubertus Birkenbach, deren moralische und finanzielle Unterstützung mir Studium und Diplomarbeit ermöglicht haben

Abbildungsverzeichnis

A Oberflächen der Kristalle

Tabelle A.1: Größe der Oberflächen der Segmente der unterschiedlichen Geometrien

Segment	Rot (A) [cm ²]	Grün (B) [cm ²]	Blau (C) [cm ²]	Sym. (S) [cm ²]
A1	8.08	7.77	7.77	6.59
A2	4.99	4.71	4.74	4.98
A3	6.13	5.7	5.82	5.54
A4	7.7	7.17	7.27	7.22
A5	7.86	7.27	7.4	7.5
A6	7.91	7.29	7.41	7.55
B1	8.21	8.23	8.02	6.59
B2	5.05	4.98	4.81	4.98
В3	6.19	6.06	5.88	5.54
B4	7.78	7.47	7.42	7.22
В5	7.95	7.57	7.55	7.5
B6	7.99	7.6	7.55	7.55
C1	7.42	8.64	7.83	6.59
C2	4.53	5.24	4.85	4.98
C3	5.55	6.39	5.94	5.54
C4	6.92	7.936	7.36	7.22
C5	7.03	8.09	7.49	7.5
C6	7.06	8.13	7.53	7.55
D1	7.23	7.23	7.98	6.59
D2	4.25	4.55	4.79	4.98
D3	5.18	5.53	5.85	5.54
D4	6.52	6.9	7.37	7.22
D5	6.62	6.98	7.52	7.5
D6	6.62	6.99	7.56	7.55
E1	7.99	7.58	8.03	6.59
E2	4.88	4.69	4.88	4.98
E3	5.98	5.74	5.97	5.54
E4	7.48	7.09	7.51	7.22
E5	7.64	7.19	7.67	7.5
E6	7.68	7.23	7.71	7.55
F1	8.22	8.36	7.89	6.59
F2	5.07	5.04	4.82	4.98
		F	ortsetzung auf de	r nächsten Seite

A Oberflächen der Kristalle

Segment	Rot (A) $[cm^2]$	$Gr\ddot{u}n$ (B) $[cm^2]$	Blau (C) $[cm^2]$	Sym. (S) $[cm^2]$
F3	6.22	6.16	5.91	5.54
F4	7.79	7.81	7.35	7.22
F5	7.96	8	7.47	7.5
F6	8	8.02	7.5	7.55
Summe	245.649	247.907	246.38	237.501

B Messungen des Herstellers

Spannung	S0	02	A003		B003	
[V]	C [pF]	R [pF]	C [pF]	R [pF]	C [pF]	R [pF]
10	627,5	689	262	1182,5	256	1223
50	455	674	230	1161,5	228,5	1212,5
100	370,5	662,5	211	1144,5	203	1197,5
200	285	638	180	1125	174	1163,5
500	177	574	134,3	1030	125,4	1020
700	144,66	530	115,8	970	105,55	930
1000	111,02	470	$96,\!35$	860	85,07	810
1250	91,5	430	84,82	770	73,04	680
1500	77,08	360	75,9	670	63,39	530
1750	66,02	265	69,06	580	55,34	355
2000	57,27	155	63,36	475	49,31	135
2250	50,27	45	58,75	375	$45,\!29$	0
2500	46,53	0	54,8	280	45,02	0
2750	46,3	0	51,46	195	44,93	0
3000	46,32	0	48,57	110	44,91	0
3250	46,15	0	46,39	40	$44,\!86$	0
3500	46,13	0	45,08	0	44,79	0
3750	46,04	0	$44,\!55$	0	44,79	0
4000	-	-	44,46	0	44,75	0
4250	-	-	44,43	0	-	-
4500	-	_	44,44	0	-	-

Tabelle B.1: Messungen des Herstellers für die Detektoren S002, A003 und B003

Spannung	ВС	005	CO	C005		006
[V]	C [pF]	R [pF]	C [pF]	R [pF]	C [pF]	R [pF]
10	281.5	1157	312.5	1105	221.5	1299
50	239.5	1138.5	260.5	1093	195.5	1269.5
100	210.5	1120.5	232	1076.5	176.5	1267.5
200	173.5	1074	192.5	1044	153.15	1210
500	120.55	900	130.6	910	107.85	1100
700	99.95	820	107.45	820	88.8	980
1000	79.09	685	83	690	68.89	740
1250	66.58	540	68.82	525	57.35	465
1500	57.14	365	58.17	325	48.72	125
1750	49.98	160	49.95	115	45.44	0
2000	45.29	0	45.2	0	45.41	0
2250	44.63	0	44.88	0	45.34	0
2500	44.54	0	44.79	0	45.28	0
2750	44.48	0	44.65	0	45.29	0
3000	44.47	0	44.6	0	45.27	0
3250	44.49	0	44.59	0	45.27	0
3500	44.49	0	44.58	0	45.28	0
3750	44.43	0	44.52	0	45.18	0
4000	44.41	0	44.57	0	45.29	0
4250	44.42	0	-	_	_	_
4500	44.35	0	_	_	_	_
4750	44.34	0	_	_	_	_
5000	44.32	0	-	-	_	-

Tabelle B.2: Messungen des Herstellers für die Detektoren B005, C005 und C006

C Pulsermessungen

C.1 Spannungsversorgung

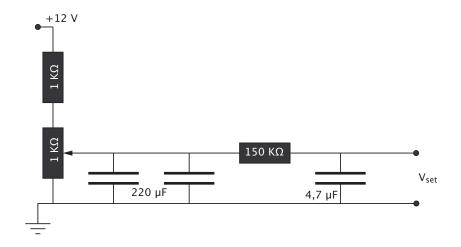


Abbildung C.1: Spannungsversorgung zur Messung des Leckstroms

C.2 Messungen der Ersatzschaltung

Tabelle C.1: Ergebnisse der Messung mit Ersatzschaltung, A Amplitude des Vorverstärkersignals, t Anstiegszeit des Vorverstärkersignals

C_x [pF]	$R_s [\Omega]$	$R_p [G\Omega]$	A [mV]	$\Delta A [mV]$	t [ns]	$\Delta t \text{ [ns]}$		
961,5	995	0	1737	11	1430	50		
961,5	801,6	0	1745,2	9,5	1268	40		
961,5	499,1	0	1763,8	15,7	1003	27		
961,5	499,1	1	1766,3	11,7	1001	29		
961,5	302,5	0	1762	18	830	27		
961,5	200,1	0	1765	11	740	25		
961,5	102,4	0	1772	11	645	21		
961,5	69,84	0	1775	11	614	21		
961,5	49,88	0	1776	12	594	20		
961,5	30,31	0	1776	11	579	18		
961,5	10,2	0	1777	10,5	558	18		
961,5	995	1	1727	12	1445	50		
961,5	995	0	1722	12	1445	47		
780	995	0	1587	12	1315	48		
780	995	1	1587	13	1314	48		
780	801,6	0	1596	13	1158	42		
780	699,2	0	1605	13	1075	39		
780	499,1	0	1618	12	912	31		
780	499,1	1	1616	13	912	31		
780	302,5	0	1629	12	753	28		
780	200,1	0	1636	11,6	670	25		
780	102,4	0	1642	10,5	588	22		
780	80,19	0	1641	11,4	573	23		
780	49,88	0	1646	11,2	549	21		
780	30,31	0	1647	10,5	529	20		
780	10,2	0	1649	10,3	512	20		
780	10,2	1	1649	11,6	512	19		
496,2	10,2	1	1193	5	362,2	9,5		
496,2	10,2	0	1191,9	4,5	362,8	9,6		
496,2	30,31	0	1191,6	4,7	375	10,1		
496,2	49,88	0	1190,7	5,5	386,7	10		
496,2	69,84	0	1188,4	5,4	398,3	10,2		
496,2	102,4	0	1187,3	5,5	416,4	11		
496,2	200,1	0	1180,9	4,8	472,9	13,5		
Fortsetzung auf der nächsten Seite								

C_x [pF]	$R_s [\Omega]$	$R_p [G\Omega]$	A [mV]	$\Delta A [mV]$	t [ns]	$\Delta t \text{ [ns]}$			
496,2	302,5	0	1176,9	5,2	531,3	14,5			
496,2	499,1	0	1170,2	5,4	644,5	17,1			
496,2	499,1	1	1169,8	5,3	646,9	18,3			
496,2	699,2	0	1164	5,2	760,2	18,7			
496,2	801,6	0	1162,5	5,1	820	20			
496,2	995	0	1156,1	5,3	939	22			
496,2	995	1	1158,1	4,7	937	22			
316,9	995	1	877,1	5,9	744,7	26,4			
316,9	995	0	875,9	5,1	741	25			
316,9	801,6	0	880	5,7	658	24			
316,9	699,2	0	881,2	5,1	610	22			
316,9	499,1	0	884,2	4,6	522	19			
316,9	499,1	1	885,3	4,9	519	18			
316,9	302,5	0	887,9	4,6	428,2	14,5			
316,9	200,1	0	890,1	4,4	380,2	13,4			
316,9	102,4	0	891,7	4,6	331,8	11			
316,9	80,19	0	892,5	4,1	320	11			
316,9	49,88	0	893,1	4,2	304	10			
316,9	30,31	0	895	4,7	294	10			
316,9	19,96	0	893,4	4,1	289	9,8			
316,9	10,2	0	894,7	4,4	284	10,5			
316,9	10,2	1	895,6	5,3	283,5	10			
175,6	10,2	1	591,4	3,4	174,9	5,2			
175,6	10,2	0	591	3,3	174,9	5			
175,6	19,96	0	589,1	3,2	176,5	5			
175,6	30,31	0	592,7	3,2	180,8	5,2			
175,6	49,88	0	587,5	2,8	188,2	6,2			
175,6	80,19	0	587,3	2,92	196,6	5,6			
175,6	102,4	0	587,1	3	201,6	6,7			
175,6	200,1	0	586,1	2,9	234,1	8			
175,6	302,5	0	585,94	3	264,9	8,6			
175,6	499,1	0	584,13	2,9	325,9	11			
175,6	699,2	0	582,6	2,5	$386,\!8$	12			
175,6	801,6	0	582,2	2,8	416,1	13			
175,6	995	0	580,5	3,1	472,5	15			
175,6	995	1	584	3,7	471,1	16			
175,6	499,1	1	584,5	2,9	323,6	11			
100,4	995	0	401,3	2,7	297	13			
100,4	995	1	403,1	3,5	299,7	13			
100,4	801,6	0	404,9	3,48	260	12,7			
	Fortsetzung auf der nächsten Seite								

C_x [pF]	$R_s [\Omega]$	$R_p [G\Omega]$	A [mV]	$\Delta A [mV]$	t [ns]	$\Delta t [ns]$	
100,4	699,2	0	404,8	4,5	238	10,9	
100,4	499,1	0	404,6	2,7	202	9,1	
100,4	302,5	0	406,3	2,7	160	7,1	
100,4	200,1	0	407,8	2,96	143,8	5	
100,4	102,4	0	412,5	3,2	128,6	4,5	
100,4	69,84	0	412	3,6	122,6	4,3	
100,4	49,88	0	410,7	3,7	120,4	4,3	
100,4	30,31	0	409,5	3	117	4,8	
100,4	10,2	0	409,6	2,7	113	4,2	
100,4	0	0	414,6	3,6	111	4	
100,4	0	1	411,8	3,5	112,2	4,2	
100,4	10,2	1	414,1	3,7	114,5	4,4	
100,4	499,1	1	404,7	2,7	198,7	9,2	
80,4	995	1	335,9	2,3	228,9	7,8	
80,4	995	0	337,3	3	226,7	8	
80,4	801,6	0	337	2,2	198,7	8,2	
80,4	699,2	0	337,7	2,2	184,5	6,7	
80,4	499,1	0	338,9	2,1	155	5,3	
80,4	302,5	0	345,1	2,6	129	3,6	
80,4	200,1	0	342,87	2,1	119,32	3,3	
80,4	102,4	0	346,3	2,2	106,5	3,4	
80,4	69,84	0	347,3	2,2	101,7	3,4	
80,4	49,88	0	347,7	2,2	98,4	3,4	
80,4	30,31	0	348	2,2	95,3	3,2	
80,4	10,2	0	347,4	2,4	90,7	2,9	
80,4	10,2	1	346	1,9	91,5	3	
80,4	499,1	1	338,5	1,85	156,9	5,5	
80,4	0	1	351	2,8	351	2,7	
80,4	0	0	347	1,8	347	2,6	
47,3	0	0	242,8	2,3	63,3	2,3	
47,3	0	1	242,9	2	63,9	2,3	
47,3	10,2	1	243,6	2	64,8	2,4	
47,3	10,2	0	243,5	1,9	64,9	2,4	
47,3	30,31	0	239,3	1,7	64,6	2,3	
47,3	49,88	0	239,4	2,1	66,1	2,7	
47,3	69,84	0	239,7	1,7	68,2	2,5	
47,3	102,4	0	239,5	1,9	70,6	2,7	
47,3	200,1	0	237,7	1,8	77,8	2,6	
47,3	302,5	0	236,9	1,8	85,6	4	
47,3	499,1	0	236,2	1,7	108,1	5	
Fortsetzung auf der nächsten Seite							

C.2 Messungen der Ersatzschaltung

C_x [pF]	$R_s [\Omega]$	$R_p [G\Omega]$	A [mV]	$\Delta A [\text{mV}]$	t [ns]	$\Delta t \text{ [ns]}$
47,3	499,1	1	236,5	1,6	108,4	4,7
47,3	699,2	0	235,6	1,6	124,9	5,7
47,3	801,6	0	235,4	1,7	135,1	6,8
47,3	995	0	235,3	1,9	147,1	5,9
47,3	995	1	234,6	1,7	150	5,5
10,2	995	0	106,4	1,4	45,2	1,9
10,2	499,1	0	108,6	1,7	40,6	1,8
10,2	102,4	0	111,9	1,5	37,7	1,6
10,2	10,2	0	112,7	1,5	38,9	2,6

C.3 Messungen mit digitalem Oszilloskop

Spannung	A003		
[V]	Amplitude [mV]	Anstiegszeit [ns]	
9,9	1849	1613	
50	1407	1250	
99,3	1185	1033	
200,4	935	$805,\!5$	
500,3	591,5	481	
700,6	492,3	392,6	
999,8	393	278	
1250,5	339	220	
1500,3	302	169	
Spannung	B003		
[V]	Amplitude [mV]	Anstiegszeit [ns]	
0	639 ± 3	1970 ± 40	
10,8	$542 \pm \ 3$	1300 ± 40	
50	$421,3 \pm 2,3$	965 ± 32	
100,7	$358,1 \pm 2,6$	905 ± 29	
200,2	$277,1 \pm 1,5$	668 ± 26	
500,4	$170,5 \pm 1$	386 ± 21	
700,7	$136,5 \pm 0.8$	278 ± 17	
1000	107 ± 4	192 ± 18	
1250,8	90 ± 3.5	142 ± 20	

Tabelle C.2: Messung des Pulsersignales mit digitalem Oszilloskop

C.4 Fits der Pulsermessungen

Der Fit der Messung C
006 ist in Abbildung 3.19auf Seite 42gegeben.

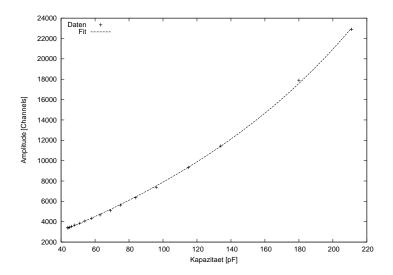


Abbildung C.2: Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor A003

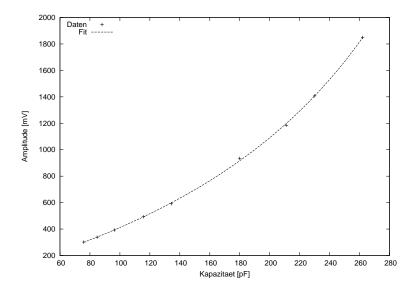


Abbildung C.3: Mit digitalem Oszilloskop gemessene Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor A003

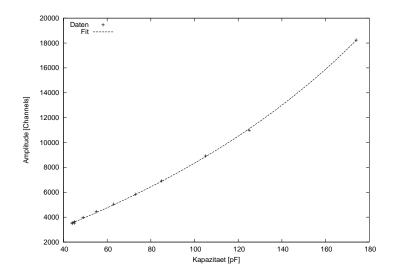


Abbildung C.4: Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor ${\rm B}003$

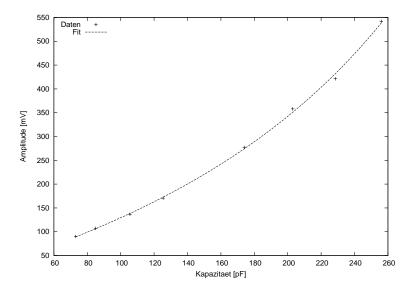


Abbildung C.5: Mit digitalem Oszilloskop gemessene Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor $\rm B003$

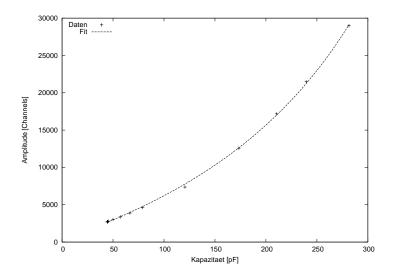


Abbildung C.6: Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor ${\rm B}005$

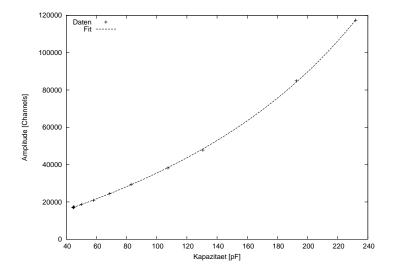


Abbildung C.7: Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor C005

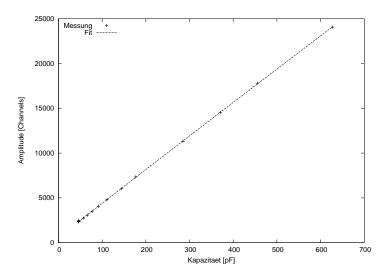


Abbildung C.8: Pulseramplitude gegen vom Hersteller gemessene Kapazität für Detektor S002

C.5 Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Tabelle C.3: Resultate der Pulsermessung von S002 und B005

G [5:7]	Kapazität [pF]		ät [pF]
Spannungen [V]	Segment	S002	B005
10	A1	$88,113 \pm 0,0049$	$85,7904 \pm 0,0154$
10	A2	$59,8659 \pm 0,0024$	$48,0861 \pm 0,0039$
10	A3	$71,0726 \pm 0,0033$	$60,7405 \pm 0,007$
10	A4	$81,5243 \pm 0,0047$	$79,9851 \pm 0,0184$
10	A5	$76,7074 \pm 0,0052$	$68,2538 \pm 0,0194$
10	A6	$64,5374 \pm 0,0053$	$48,8289 \pm 0,015$
10	B1	$89,3512 \pm 0,0051$	$80,9624 \pm 0,0141$
10	B2	$60,703 \pm 0,0025$	$52,3631 \pm 0,0053$
10	В3	$72,1401 \pm 0,0033$	$72,3649 \pm 0,0117$
10	B4	$83,5206 \pm 0,005$	$90,6015 \pm 0,0274$
10	В5	$78,8518 \pm 0,0056$	$74,576 \pm 0,0242$
10	В6	$66,9142 \pm 0,0057$	$51,8306 \pm 0,0212$
10	C1	$93,2752 \pm 0,0054$	$79,8375 \pm 0,0126$
10	C2	$61,4618 \pm 0,0025$	$47,2059 \pm 0,0039$
10	C3	$71,9265 \pm 0,0033$	$63,9876 \pm 0,0079$
10	C4	$82,1439 \pm 0,0048$	$80,8884 \pm 0,0183$
10	C5	$77,5733 \pm 0,0053$	$66,0785 \pm 0,0172$
10	C6	$63,8406 \pm 0,0051$	$45,8097 \pm 0,0134$
10	co	$2707,2855 \pm 143,0348$	$2465,482 \pm 232,4765$
10	D1	$90,7942 \pm 0,0052$	$84,9552 \pm 0,0148$
10	D2	$59,2108 \pm 0,0024$	$51,5134 \pm 0,0048$
10	D3	$70,5407 \pm 0,0032$	$65,3392 \pm 0,0087$
10	D4	$82,6913 \pm 0,0048$	$86,7064 \pm 0,025$
10	D5	$79,232 \pm 0,0055$	$75,0633 \pm 0,0663$
10	D6	$65,4859 \pm 0,0054$	$55,0501 \pm 0,021$
10	E1	$92,8457 \pm 0,0053$	$89,2449 \pm 0,0167$
10	E2	$61,3577 \pm 0,0025$	$55,6625 \pm 0,0057$
10	E3	$72,8803 \pm 0,0033$	$71,7117 \pm 0,0108$
10	E4	$85,338 \pm 0,005$	$92,3938 \pm 0,0278$
10	E5	$80,4287 \pm 0,0058$	$77,7141 \pm 0,0304$
10	E6	$65,347 \pm 0,0055$	$55,7002 \pm 0,0222$
10	F1	$89,8312 \pm 0,0049$	$82,4273 \pm 0,0144$
10	F2	$61,7723 \pm 0,0025$	$50,3681 \pm 0,0044$
10	F3	$73,9665 \pm 0,0034$	$66,0099 \pm 0,0085$
Fortsetzung auf der nächsten Seite			

G [37]	G 4	Kapazität [pF]	
Spannungen [V]	Segment	S002	B005
10	F4	$85,6886 \pm 0,005$	$84,8984 \pm 0,0201$
10	F5	$79,7741 \pm 0,0055$	$70,4091 \pm 0,0221$
10	F6	$66,5777 \pm 0,0056$	$52,1236 \pm 0,0181$
25	A1	$50,2956 \pm 0,0025$	-
25	A2	$34,9291 \pm 0,0014$	-
25	A3	$41,3303 \pm 0,0018$	-
25	A4	$47,3419 \pm 0,0024$	-
25	A5	$44,7027 \pm 0,0025$	-
25	A6	$38,4832 \pm 0,0025$	-
25	B1	$50,6454 \pm 0,0026$	-
25	B2	$35,2973 \pm 0,0014$	-
25	В3	$41,8274 \pm 0,0018$	-
25	B4	$48,\!559\pm0,\!0025$	-
25	В5	$45,9625 \pm 0,0026$	-
25	В6	$39,6242 \pm 0,0026$	-
25	C1	$52,848 \pm 0,0027$	-
25	C2	$35,3526 \pm 0,0014$	-
25	C3	$41,4051 \pm 0,0018$	-
25	C4	$47,3584 \pm 0,0024$	-
25	C5	$45,0775\pm0,0025$	-
25	C6	$37,6252 \pm 0,0023$	-
25	co	$1569,3317 \pm 51,2423$	-
25	D1	$51,7307 \pm 0,0026$	-
25	D2	$34,4528 \pm 0,0013$	-
25	D3	$40,768 \pm 0,0017$	-
25	D4	$47,7428 \pm 0,0024$	-
25	D5	$45,9114 \pm 0,0026$	-
25	D6	$38,6563 \pm 0,0025$	-
25	E1	$52,8151 \pm 0,0027$	-
25	E2	$35,9984 \pm 0,0014$	-
25	E3	$42,2253 \pm 0,0018$	-
25	E4	$49,5207\pm0,0025$	-
25	E5	$46,6192 \pm 0,0027$	-
25	E6	$38,6916 \pm 0,0025$	-
25	F1	$51,3085 \pm 0,0025$	-
25	F2	$36,0231 \pm 0,0014$	-
25	F3	$42,6418 \pm 0,0018$	-
25	F4	$49,5211\pm0,0025$	-
25	F5	$46,5287\pm0,0026$	-
25	F6	$39,5105 \pm 0,0026$	-
Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Charamana [V]	Commont	Kapazität [pF]	
Spannungen [V]	Segment	S002	B005
30	A1	-	$46,0298 \pm 0,0047$
30	A2	-	$26,053 \pm 0,0016$
30	A3	-	$33,0894 \pm 0,0026$
30	A4	-	$44,474 \pm 0,0059$
30	A5	-	$37,9261 \pm 0,0054$
30	A6	-	$26,266 \pm 0,0038$
30	B1	-	$43,1042 \pm 0,0045$
30	B2	-	$28,7092 \pm 0,002$
30	В3	-	$40,6693 \pm 0,0043$
30	B4	-	$51,8281 \pm 0,0088$
30	B5	-	$41,9871 \pm 0,0071$
30	В6	-	$28,0042 \pm 0,0048$
30	C1	-	$42,6188 \pm 0,0041$
30	C2	-	$25,7044 \pm 0,0016$
30	C3	-	$35,6083 \pm 0,003$
30	C4	-	$46,035 \pm 0,0063$
30	C5	-	$37,3961 \pm 0,0053$
30	C6	-	$24,8932 \pm 0,0034$
30	co	-	$1364,0216 \pm 83,5503$
30	D1	-	$45,5106 \pm 0,0048$
30	D2	-	$28,128 \pm 0,0019$
30	D3	-	$36,3028 \pm 0,0032$
30	D4	-	$49,094 \pm 0,0078$
30	D5	-	$42,0914 \pm 0,0077$
30	D6	-	$29,9407 \pm 0,0054$
30	E1	-	$47,9016 \pm 0,0051$
30	E2	-	$30,7892 \pm 0,0023$
30	E3	-	$40,3828 \pm 0,0039$
30	E4	-	$53,3059 \pm 0,0087$
30	E5	-	$44,2441 \pm 0,0081$
30	E6	-	$30,5439 \pm 0,0057$
30	F1	-	$44,1266 \pm 0,0043$
30	F2	-	$27,538 \pm 0,0018$
30	F3	-	$36,771 \pm 0,0031$
30	F4	-	$48,4604 \pm 0,0068$
30	F5	-	$39,9746 \pm 0,006$
30	F6	-	$28,5195\pm0,0048$
50	A1	$32,6161 \pm 0,0017$	$33,9644 \pm 0,0033$
50	A2	$23,4151 \pm 0,001$	$19,4651\pm0,0013$
50	A3	$27,\!6582\pm0,\!0013$	$24,4186 \pm 0,0019$
Fortsetzung auf der nächsten Seite			

G [X7]	C .	Kapazität [pF]		
Spannungen [V]	Segment	S002	B005	
50	A4	$31,6244 \pm 0,0017$	$32,8641 \pm 0,0039$	
50	A5	$29,9026 \pm 0,0017$	$27,7154 \pm 0,0035$	
50	A6	$25,7008 \pm 0,0016$	$18,5893 \pm 0,0022$	
50	B1	$32,8292 \pm 0,0018$	$31,5565 \pm 0,0031$	
50	B2	$23,6564 \pm 0,001$	$21,2604 \pm 0,0016$	
50	В3	$27,9684 \pm 0,0013$	$30,3119 \pm 0,0031$	
50	B4	$32,4684 \pm 0,0018$	$38,792 \pm 0,0057$	
50	В5	$30,7409 \pm 0,0018$	$30,9118 \pm 0,0045$	
50	В6	$26,2623 \pm 0,0017$	$19,8445 \pm 0,0028$	
50	C1	$34,2212 \pm 0,0018$	$31,3234 \pm 0,0028$	
50	C2	$23,6504 \pm 0,001$	$19,0768 \pm 0,0012$	
50	C3	$27,637 \pm 0,0013$	$26,4306 \pm 0,0022$	
50	C4	$31,5806 \pm 0,0017$	$34,3783 \pm 0,0043$	
50	C5	$30,1108 \pm 0,0017$	$27,5624 \pm 0,0035$	
50	C6	$24,9002 \pm 0,0015$	$17,7087 \pm 0,0021$	
50	co	$1043,\!1863\pm24,\!5334$	$1006,4025 \pm 51,0449$	
50	D1	$33,512 \pm 0,0018$	$33,4803 \pm 0,0033$	
50	D2	$23,0973 \pm 0,001$	$20,9626 \pm 0,0015$	
50	D3	$27,2645 \pm 0,0012$	$26,9606 \pm 0,0024$	
50	D4	$31,8459 \pm 0,0017$	$36,6654 \pm 0,0053$	
50	D5	$30,6522 \pm 0,0018$	$30,9051 \pm 0,0048$	
50	D6	$25,6742 \pm 0,0016$	$21,3146 \pm 0,0031$	
50	E1	$34,2658 \pm 0,0018$	$35,2718 \pm 0,0036$	
50	E2	$24,2114 \pm 0,0011$	$23,0003 \pm 0,0017$	
50	E3	$28,2484 \pm 0,0013$	$30,2333 \pm 0,0029$	
50	E4	$33,106 \pm 0,0018$	$40,1724 \pm 0,006$	
50	E5	$31,1691 \pm 0,0018$	$32,8085 \pm 0,0052$	
50	E6	$26,1434 \pm 0,0017$	$21,9264 \pm 0,0033$	
50	F1	$33,4205 \pm 0,0017$	$32,4764 \pm 0,003$	
50	F2	$24,1503 \pm 0,001$	$20,4439 \pm 0,0014$	
50	F3	$28,4991 \pm 0,0013$	$27,3431 \pm 0,0023$	
50	F4	$33,095 \pm 0,0018$	$36,3243 \pm 0,0047$	
50	F5	$31,2061 \pm 0,0018$	$29,516 \pm 0,004$	
50	F6	$26,6824 \pm 0,0018$	$20,4232 \pm 0,0028$	
75	A1	$24,7297 \pm 0,0014$	- '	
75	A2	$18,3117 \pm 0,0009$	-	
75	A3	$21,6055 \pm 0,0011$	-	
75	A4	$24,6545 \pm 0,0014$	-	
75	A5	$23,301 \pm 0,0014$	-	
75	A6	$20,0163 \pm 0,0013$	-	
	Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channing [V]	Comment	Kapazität [pF]		
Spannungen [V]	Segment	S002	B005	
75	B1	$24,8433 \pm 0,0014$	-	
75	B2	$18,5075 \pm 0,0009$	-	
75	В3	$21,8508 \pm 0,0011$	_	
75	B4	$25,3198 \pm 0,0015$	_	
75	В5	$23,9583 \pm 0,0015$	_	
75	В6	$20,\!4251\pm0,\!0014$	-	
75	C1	$25{,}9287 \pm 0{,}0015$	_	
75	C2	$18,4978 \pm 0,0009$	-	
75	C3	$21,\!5756\pm0,\!0011$	-	
75	C4	$24,6108 \pm 0,0014$	-	
75	C5	$23,4488 \pm 0,0014$	-	
75	C6	$19{,}3557\pm0{,}0012$	-	
75	co	$809,5108 \pm 15,8516$	-	
75	D1	$25,\!4274\pm0,\!0015$	-	
75	D2	$18,0665 \pm 0,0008$	-	
75	D3	$21,\!297\pm0,\!0011$	-	
75	D4	$24,8183 \pm 0,0014$	-	
75	D5	$23{,}8706 \pm 0{,}0015$	-	
75	D6	$19,9659\pm0,0013$	-	
75	E1	$25,9874 \pm 0,0015$	_	
75	E2	$18,9627\pm0,0009$	-	
75	E3	$22,0901 \pm 0,0011$	-	
75	E4	$25{,}8375\pm0{,}0015$	-	
75	E5	$24,\!2802\pm0,\!0015$	-	
75	E6	$20,\!4125\pm0,\!0014$	-	
75	F1	$25,3738 \pm 0,0014$	_	
75	F2	$18,8909 \pm 0,0009$	-	
75	F3	$22,2697 \pm 0,0011$	-	
75	F4	$25,\!827\pm0,\!0015$	-	
75	F5	$24,3382 \pm 0,0015$	-	
75	F6	$20,8541\pm0,0014$	-	
100	A1	$20,\!2511\pm0,\!0012$	$21,9289 \pm 0,0024$	
100	A2	$15{,}3801 \pm 0{,}0008$	$13,0225 \pm 0,001$	
100	A3	$18,1514 \pm 0,001$	$15,7316 \pm 0,0014$	
100	A4	$20,6666\pm0,0013$	$20,8344 \pm 0,0025$	
100	A5	$19{,}508\pm0{,}0012$	$16,9102 \pm 0,002$	
100	A6	$16,7557\pm0,0012$	$10,7522\pm0,0011$	
100	B1	$20{,}3312\pm0{,}0012$	$20,0535\pm0,0021$	
100	B2	$15,\!5507 \pm 0,\!0008$	$13,739 \pm 0,0012$	
100	В3	$18,3644 \pm 0,001$	$19,6219 \pm 0,0021$	
	Fortsetzung auf der nächsten Seite			

Crammum man [V]	Commonat	Kapazität [pF]	
Spannungen [V]	Segment	S002	B005
100	B4	$21,2283 \pm 0,0013$	$25,0644 \pm 0,0035$
100	В5	$20,0627 \pm 0,0013$	$19,1177 \pm 0,0025$
100	В6	$17,09 \pm 0,0012$	$11,5211 \pm 0,0013$
100	C1	$21,2428 \pm 0,0013$	$20,0609 \pm 0,002$
100	C2	$15,55 \pm 0,0008$	$12,4855 \pm 0,001$
100	C3	$18,1274 \pm 0,001$	$17,0016 \pm 0,0016$
100	C4	$20,6293 \pm 0,0013$	$22,128 \pm 0,0028$
100	C5	$19,6122 \pm 0,0013$	$17,041 \pm 0,002$
100	C6	$16,2006 \pm 0,0011$	$10,2139 \pm 0,001$
100	co	$676,031 \pm 11,7658$	$637,8163 \pm 25,6402$
100	D1	$20,8227 \pm 0,0013$	$21,4508 \pm 0,0023$
100	D2	$15,1814 \pm 0,0008$	$13,8421 \pm 0,0012$
100	D3	$17,8961 \pm 0,001$	$17,4368 \pm 0,0017$
100	D4	$20,8038 \pm 0,0013$	$23,5834 \pm 0,0034$
100	D5	$19,9741 \pm 0,0013$	$18,9797 \pm 0,0027$
100	D6	$16,7077 \pm 0,0012$	$12,3382 \pm 0,0014$
100	E1	$21,287 \pm 0,0013$	$22,6638 \pm 0,0025$
100	E2	$15,9392 \pm 0,0008$	$15,1535 \pm 0,0014$
100	E3	$18,5684 \pm 0,001$	$19,7382 \pm 0,002$
100	E4	$21,6727 \pm 0,0013$	$26,2855 \pm 0,0038$
100	E5	$20,3435 \pm 0,0013$	$20,5837 \pm 0,0029$
100	E6	$17,1481 \pm 0,0012$	$12,8567 \pm 0,0015$
100	F1	$20,8479 \pm 0,0012$	$20,8681 \pm 0,0021$
100	F2	$15,8813 \pm 0,0008$	$13,3314 \pm 0,0011$
100	F3	$18,7024 \pm 0,001$	$17,6611 \pm 0,0017$
100	F4	$21,6647 \pm 0,0013$	$23,5286 \pm 0,003$
100	F5	$20,395 \pm 0,0013$	$18,3775 \pm 0,0023$
100	F6	$17,4925 \pm 0,0013$	$11,9093 \pm 0,0013$
200	A1	$12,2657 \pm 0,0009$	$13,6255 \pm 0,002$
200	A2	$10,0197 \pm 0,0007$	$8,5848 \pm 0,001$
200	A3	$11,9204 \pm 0,0008$	$9,8594 \pm 0,0012$
200	A4	$13,4777 \pm 0,001$	$12,1812 \pm 0,0017$
200	A5	$12,6259 \pm 0,001$	$9,3397 \pm 0,0013$
200	A6	$10,9464 \pm 0,0009$	$6,1586 \pm 0,0007$
200	B1	$12,\!3011\pm0,\!001$	$12,2384 \pm 0,0018$
200	B2	$10{,}1551 \pm 0{,}0007$	$8,4719 \pm 0,001$
200	В3	$12,0863 \pm 0,0009$	$11,8636 \pm 0,0017$
200	B4	$13,8837 \pm 0,0011$	$14,8904 \pm 0,0025$
200	В5	$13,0179 \pm 0,0011$	$10,6304 \pm 0,0016$
200	В6	$11,142 \pm 0,0009$	$6,6152 \pm 0,0009$
Fortsetzung auf der nächsten Seite			

C.5 Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazität [pF]		
Spannungen [v]	Beginein	S002	B005	
200	C1	$12,863 \pm 0,001$	$12,3329 \pm 0,0016$	
200	C2	$10,1636 \pm 0,0007$	$7,9736 \pm 0,0009$	
200	C3	$11,8932 \pm 0,0008$	$10,3552 \pm 0,0013$	
200	C4	$13,4298 \pm 0,0011$	$13,0631 \pm 0,0019$	
200	C5	$12,6987 \pm 0,001$	$9,4455 \pm 0,0013$	
200	C6	$10,\!5661\pm0,\!0009$	$5,7136 \pm 0,0006$	
200	co	$435{,}7379 \pm 5{,}9977$	$380,4874 \pm 12,7604$	
200	D1	$12,6112 \pm 0,001$	$13,1697 \pm 0,0019$	
200	D2	$9,9307 \pm 0,0007$	$8,9131 \pm 0,001$	
200	D3	$11,7431 \pm 0,0008$	$10,701 \pm 0,0014$	
200	D4	$13,5669 \pm 0,0011$	$13,9094 \pm 0,0024$	
200	D5	$12,9321 \pm 0,0011$	$10,4805 \pm 0,0017$	
200	D6	10.9 ± 0.0009	$6,8399 \pm 0,0009$	
200	E1	$12,9144 \pm 0,001$	$13,9987 \pm 0,002$	
200	E2	$10,4069 \pm 0,0007$	$9,5947 \pm 0,0012$	
200	E3	$12,2239 \pm 0,0008$	$12,2045 \pm 0,0016$	
200	E4	$14,1695 \pm 0,0011$	$15,9131 \pm 0,0026$	
200	E5	$13,1973 \pm 0,0011$	$11,5296 \pm 0,0018$	
200	E6	$11,3382 \pm 0,001$	$7,0989 \pm 0,0009$	
200	F1	$12,6703 \pm 0,0009$	$12,891 \pm 0,0017$	
200	F2	$10{,}3629 \pm 0{,}0007$	$8,3669 \pm 0,0009$	
200	F3	$12,3056 \pm 0,0009$	$10,7463 \pm 0,0013$	
200	F4	$14{,}1767\pm0{,}0011$	$13,985 \pm 0,0021$	
200	F5	$13,\!2787\pm0,\!0011$	$10,195 \pm 0,0015$	
200	F6	$11,5531 \pm 0,001$	$6,6072 \pm 0,0008$	
300	A1	$8,8867 \pm 0,0008$	$10,0228 \pm 0,0013$	
300	A2	$7,\!6025\pm0,\!0006$	$6,5925 \pm 0,0007$	
300	A3	$9,2108 \pm 0,0008$	$7,4776 \pm 0,0008$	
300	A4	$10,3593 \pm 0,0009$	$8,6182 \pm 0,001$	
300	A5	$9,6362 \pm 0,0009$	$6,5839 \pm 0,0008$	
300	A6	$8,2768 \pm 0,0008$	$4,686 \pm 0,0005$	
300	B1	$8,8946 \pm 0,0008$	$8,9475 \pm 0,0011$	
300	B2	$7,7269\pm0,0006$	$6,2382 \pm 0,0007$	
300	В3	$9,3673 \pm 0,0008$	$8,4164 \pm 0,001$	
300	B4	$10,\!6942\pm0,\!001$	$10,2468 \pm 0,0014$	
300	B5	$9,9641 \pm 0,001$	$7,4476 \pm 0,0009$	
300	В6	$8,4767 \pm 0,0008$	$5{,}1117 \pm 0{,}0006$	
300	C1	$9,316 \pm 0,0008$	$9,0378 \pm 0,0011$	
300	C2	$7,7518\pm0,0006$	$6,0378 \pm 0,0006$	
300	C3	$9,2101 \pm 0,0008$	$7,5678 \pm 0,0008$	
	Fortsetzung auf der nächsten Seite			

C[17]	C t	Kapazität [pF]	
Spannungen [V]	Segment	S002	B005
300	C4	$10,3304 \pm 0,001$	$8,9865 \pm 0,0011$
300	C5	$9,6935 \pm 0,0009$	$6,5791 \pm 0,0008$
300	C6	$8,0349 \pm 0,0008$	$4,3703 \pm 0,0004$
300	co	$330,436 \pm 4,1043$	$275,0034 \pm 8,6414$
300	D1	$9,1296 \pm 0,0008$	$9,6259 \pm 0,0012$
300	D2	$7,\!5672\pm0,\!0006$	$6,7552 \pm 0,0007$
300	D3	$9,0891 \pm 0,0008$	$7,8892 \pm 0,0009$
300	D4	$10,4412 \pm 0,001$	$9,6603 \pm 0,0014$
300	D5	$9,877 \pm 0,001$	$7,3428 \pm 0,001$
300	D6	$8,2658 \pm 0,0008$	$5,1847 \pm 0,0006$
300	E1	$9,3919 \pm 0,0009$	$10,2758 \pm 0,0013$
300	E2	$7,9266\pm0,0007$	$7,1536 \pm 0,0008$
300	E3	$9,472 \pm 0,0008$	$8,8489 \pm 0,001$
300	E4	$10,9179 \pm 0,001$	$11,0809 \pm 0,0015$
300	E5	$10,0752\pm0,001$	$7,9434 \pm 0,001$
300	E6	$8,4825 \pm 0,0009$	$5,2985 \pm 0,0006$
300	F1	$9,2056 \pm 0,0008$	$9,4721 \pm 0,0011$
300	F2	$7,883 \pm 0,0006$	$6,2172 \pm 0,0006$
300	F3	$9,5326 \pm 0,0008$	$7,7878 \pm 0,0008$
300	F4	$10,9226\pm0,001$	$9,5814 \pm 0,0012$
300	F5	$10,1445 \pm 0,001$	$7,0204 \pm 0,0009$
300	F6	$8,6793 \pm 0,0009$	$4,8969 \pm 0,0005$
400	A1	$6,9573 \pm 0,0012$	$7,9714 \pm 0,0012$
400	A2	$6,1371 \pm 0,0007$	$5,3985 \pm 0,0007$
400	A3	$7,6296 \pm 0,0011$	$6,2212 \pm 0,0008$
400	A4	$8,5375 \pm 0,0014$	$6,8575 \pm 0,001$
400	A5	$7,\!8863\pm0,\!0012$	$5,2448 \pm 0,0007$
400	A6	$6,8096 \pm 0,0009$	$3,8472 \pm 0,0005$
400	B1	$6,9525\pm0,0015$	$7,0818 \pm 0,0011$
400	B2	$6,2454\pm0,0009$	$4,9931 \pm 0,0007$
400	В3	$7,7513 \pm 0,0013$	$6,5305 \pm 0,001$
400	B4	$8,8226 \pm 0,0021$	$7,6544 \pm 0,0012$
400	B5	$8,16 \pm 0,0023$	$5,8351 \pm 0,0009$
400	В6	$6,9644 \pm 0,0012$	$4,1992 \pm 0,0006$
400	C1	$7,\!2722\pm0,\!0011$	$7,1461 \pm 0,001$
400	C2	$6,2659 \pm 0,0007$	$4,8944 \pm 0,0006$
400	С3	$7,6267\pm0,001$	$6,0848 \pm 0,0008$
400	C4	$8,\!5051\pm0,\!0015$	$6,8159 \pm 0,001$
400	C5	$7,9394\pm0,0015$	$5,1457 \pm 0,0007$
400	C6	$6,6092 \pm 0,001$	$3,5768 \pm 0,0004$
Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]
Spannungen [v]	beginent	S002	B005
400	co	$269,236 \pm 3,1783$	$217,4972 \pm 6,6894$
400	D1	$7,1356 \pm 0,0012$	$7,5948 \pm 0,0012$
400	D2	$6,1226 \pm 0,0007$	$5,4803 \pm 0,0007$
400	D3	$7,\!5204\pm0,\!0009$	$6,4351 \pm 0,0009$
400	D4	$8,613 \pm 0,0016$	$7,481 \pm 0,0013$
400	D5	$8,1019 \pm 0,0023$	$5,7942 \pm 0,001$
400	D6	$6,8112 \pm 0,0015$	$4,2275 \pm 0,0006$
400	E1	$7,3558\pm0,0012$	$8,1643 \pm 0,0013$
400	E2	$6,4083 \pm 0,0007$	$5,7387 \pm 0,0008$
400	E3	$7,8408 \pm 0,001$	$6,9601 \pm 0,001$
400	E4	$8,999 \pm 0,0014$	$8,3038 \pm 0,0013$
400	E5	$8,2695 \pm 0,0019$	$6,1261 \pm 0,001$
400	E6	$7,0146 \pm 0,0012$	$4,3104 \pm 0,0006$
400	F1	$7,2234 \pm 0,001$	$7,5335 \pm 0,0011$
400	F2	$6,3708 \pm 0,0007$	$4,9997 \pm 0,0006$
400	F3	$7,8903 \pm 0,001$	$6,1941 \pm 0,0008$
400	F4	$9,0052 \pm 0,0013$	$7,2111 \pm 0,001$
400	F5	$8,3204 \pm 0,0015$	$5,4513 \pm 0,0008$
400	F6	$7,1612 \pm 0,0011$	$3,9929 \pm 0,0005$
500	A1	$5,6867 \pm 0,001$	$6,6253 \pm 0,0012$
500	A2	$5,1272 \pm 0,0007$	$4,5726 \pm 0,0007$
500	A3	$6,5466 \pm 0,001$	$5,3942 \pm 0,0009$
500	A4	$7,\!3049\pm0,\!0012$	$5,816 \pm 0,001$
500	A5	$6,713 \pm 0,0011$	$4,4331 \pm 0,0007$
500	A6	$5,781 \pm 0,0008$	$3,2852 \pm 0,0005$
500	B1	$5,6754 \pm 0,0013$	$5,8438 \pm 0,0011$
500	B2	$5,2198 \pm 0,0008$	$4,1629 \pm 0,0007$
500	В3	$6,6592\pm0,0012$	$5,4405 \pm 0,0009$
500	B4	$7,\!5631\pm0,\!0018$	$6,\!206 \pm 0,\!0011$
500	B5	$6,9575\pm0,0021$	$4,8734 \pm 0,0009$
500	В6	$5,9205 \pm 0,0011$	$3,5955 \pm 0,0006$
500	C1	$5,9398 \pm 0,0009$	$5,8821 \pm 0,0117$
500	C2	$5,2434 \pm 0,0007$	$4,1205 \pm 0,0006$
500	C3	$6,\!5552\pm0,\!0009$	$5,1613 \pm 0,0008$
500	C4	$7,\!2866\pm0,\!0014$	$5,588 \pm 0,0009$
500	C5	$6,7569\pm0,0013$	$4,2973\pm0,0007$
500	C6	$5,6222 \pm 0,0009$	$3,0538 \pm 0,0004$
500	co	$227,\!8031\pm2,\!6234$	$181,7017 \pm 5,5847$
500	D1	$5,8253 \pm 0,001$	$6,2585 \pm 0,0011$
500	D2	$5,1269 \pm 0,0006$	$4,6104 \pm 0,0007$
Fortsetzung auf der nächsten Seite			

G [17]	G 4	Kapazität [pF]		
Spannungen [V]	Segment	S002	B005	
500	D3	$6,4643 \pm 0,0009$	$5,5071 \pm 0,0009$	
500	D4	$7,3836 \pm 0,0015$	$6,2675 \pm 0,0012$	
500	D5	$6,9086 \pm 0,0021$	$4,863 \pm 0,001$	
500	D6	$5,7959 \pm 0,0014$	$3,6045 \pm 0,0006$	
500	E1	$6,0245 \pm 0,0011$	$6,7598 \pm 0,0012$	
500	E2	$5,3688 \pm 0,0007$	$4,7901 \pm 0,0008$	
500	E3	$6,7446 \pm 0,0009$	$5,8161 \pm 0,0009$	
500	E4	$7,7138 \pm 0,0012$	$6,6872 \pm 0,0012$	
500	E5	$7,0395 \pm 0,0016$	$5,0668 \pm 0,0009$	
500	E6	$5,9323 \pm 0,0011$	$3,6683 \pm 0,0006$	
500	F1	$5,9111 \pm 0,0009$	$6,2564 \pm 0,0011$	
500	F2	$5,3276 \pm 0,0006$	$4,172 \pm 0,0006$	
500	F3	$6,786 \pm 0,0009$	$5,2065 \pm 0,0008$	
500	F4	$7,724 \pm 0,0012$	$5,8802 \pm 0,001$	
500	F5	$7,0942 \pm 0,0013$	$4,5278 \pm 0,0008$	
500	F6	$6,0734 \pm 0,001$	$3,4075 \pm 0,0005$	
600	A1	$4,7899 \pm 0,0009$	-	
600	A2	$4,3833 \pm 0,0007$	-	
600	A3	$5,771 \pm 0,001$	-	
600	A4	$6,4198 \pm 0,0012$	-	
600	A5	$5,8672 \pm 0,001$	-	
600	A6	$5,0373 \pm 0,0008$	-	
600	B1	$4,7703 \pm 0,0011$	-	
600	B2	$4,4592 \pm 0,0008$	-	
600	В3	$5,874 \pm 0,0012$	-	
600	B4	$6,6557 \pm 0,0017$	-	
600	В5	$6,0944 \pm 0,0019$	-	
600	В6	$5,1667 \pm 0,0011$	-	
600	C1	$4,9951 \pm 0,0009$	-	
600	C2	$4,4831 \pm 0,0006$	-	
600	C3	$5,7701 \pm 0,0009$	-	
600	C4	$6,399 \pm 0,0013$	-	
600	C5	$5,9124 \pm 0,0012$	-	
600	C6	$4,9134 \pm 0,0009$	-	
600	co	$197,8733 \pm 2,2586$	-	
600	D1	$4,8976 \pm 0,0009$	-	
600	D2	$4,3923 \pm 0,0006$	-	
600	D3	$5,6914 \pm 0,0008$	-	
600	D4	$6,\!4864 \pm 0,\!0014$	-	
600	D5	$6,0391 \pm 0,0018$	-	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

G [17]	G .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
600	D6	$5,0582 \pm 0,0012$	-	
600	E1	$5,0774 \pm 0,001$	-	
600	E2	$4,5989 \pm 0,0006$	-	
600	E3	$5,9468 \pm 0,0009$	-	
600	E4	$6,7826 \pm 0,0012$	_	
600	E5	$6,1558\pm0,0015$	_	
600	E6	$5,1653 \pm 0,001$	-	
600	F1	$4,9877 \pm 0,0008$	_	
600	F2	$4,5599 \pm 0,0006$	_	
600	F3	$5,98 \pm 0,0009$	_	
600	F4	$6,7934 \pm 0,0011$	_	
600	F5	$6,2078 \pm 0,0012$	_	
600	F6	$5,291 \pm 0,001$	_	
700	A1	$4,1055 \pm 0,0009$	_	
700	A2	$3,7984 \pm 0,0006$	_	
700	A3	$5,1464 \pm 0,001$	_	
700	A4	$5,7309 \pm 0,0011$	_	
700	A5	$5,2061 \pm 0,001$	_	
700	A6	$4,428 \pm 0,0008$	_	
700	B1	$4,0838 \pm 0,0011$	-	
700	B2	$3,8678 \pm 0,0007$	_	
700	В3	$5,2527 \pm 0,0012$	_	
700	B4	$5,946 \pm 0,0016$	_	
700	В5	$5,406 \pm 0,0019$	_	
700	В6	$4,5568 \pm 0,001$	_	
700	C1	$4,2755\pm0,0008$	-	
700	C2	$3,8926 \pm 0,0006$	_	
700	C3	$5,1557 \pm 0,0009$	_	
700	C4	$5,7199 \pm 0,0013$	_	
700	C5	$5,2486 \pm 0,0012$	_	
700	C6	$4,33 \pm 0,0009$	_	
700	co	$174,3574 \pm 1,9934$	_	
700	D1	$4,1906 \pm 0,0009$	-	
700	D2	$3,8059 \pm 0,0006$	-	
700	D3	$5,0877 \pm 0,0008$	-	
700	D4	$5,7978 \pm 0,0014$	-	
700	D5	$5,3654 \pm 0,0019$	-	
700	D6	$4,\!4669\pm0,\!0013$	-	
700	E1	$4,3473 \pm 0,0009$	-	
700	E2	$3,9839 \pm 0,0006$	-	
Fortsetzung auf der nächsten Seite				

C [V]	C	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
700	E3	$5,3113 \pm 0,0009$	-	
700	E4	$6,0528 \pm 0,0011$	-	
700	E5	$5,4617 \pm 0,0015$	-	
700	E6	$4,5508 \pm 0,001$	-	
700	F1	$4,2692 \pm 0,0008$	-	
700	F2	$3,9544 \pm 0,0006$	-	
700	F3	$5,3438 \pm 0,0009$	-	
700	F4	$6,061 \pm 0,0011$	-	
700	F5	$5,4921 \pm 0,0012$	-	
700	F6	$4,6643 \pm 0,0009$	-	
750	A1	-	$4,5589 \pm 0,0011$	
750	A2	-	$3,2545 \pm 0,0007$	
750	A3	-	$4,117 \pm 0,0009$	
750	A4	-	$4,3627 \pm 0,001$	
750	A5	-	$3,2613 \pm 0,0007$	
750	A6	-	$2,4313 \pm 0,0005$	
750	B1	-	$3,9825 \pm 0,001$	
750	B2	-	$2,8937 \pm 0,0006$	
750	В3	-	$3,9481 \pm 0,0009$	
750	B4	-	$4,3854 \pm 0,0011$	
750	B5	-	$3,5119 \pm 0,0008$	
750	В6	-	$2,6596 \pm 0,0006$	
750	C1	-	$4,0232 \pm 0,0009$	
750	C2	-	$2,9139 \pm 0,0006$	
750	C3	-	$3,8355 \pm 0,0008$	
750	C4	-	$4,0146 \pm 0,0009$	
750	C5	-	$3,0963 \pm 0,0007$	
750	C6	-	$2,2515 \pm 0,0004$	
750	co	-	$130,1116 \pm 4,1557$	
750	D1	-	$4,254 \pm 0,001$	
750	D2	-	$3,2532 \pm 0,0007$	
750	D3	-	$4,137 \pm 0,0009$	
750	D4	-	$4,6105 \pm 0,0012$	
750	D5	-	$3,5415 \pm 0,0009$	
750	D6	-	$2,6449 \pm 0,0006$	
750	E1	-	$4,6329 \pm 0,0011$	
750	E2	-	$3,3362 \pm 0,0007$	
750	E3	-	$4,2258 \pm 0,0009$	
750	E4	-	$4,6945 \pm 0,0011$	
750	E5	-	$3,6154 \pm 0,0009$	
	Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

C[17]	C	Kapazit	ät [pF]
Spannungen [V]	Segment	S002	B005
750	E6	-	$2,692 \pm 0,0006$
750	F1	-	$4,2893 \pm 0,001$
750	F2	-	$2,8997 \pm 0,0006$
750	F3	-	$3,8231 \pm 0,0008$
750	F4	-	$4,1844 \pm 0,0009$
750	F5	-	$3,2538 \pm 0,0008$
750	F6	-	$2,5214 \pm 0,0005$
800	A1	$3,5653 \pm 0,0009$	-
800	A2	$3,3283 \pm 0,0006$	-
800	A3	$4,6436 \pm 0,001$	-
800	A4	$5,1746 \pm 0,0011$	-
800	A5	$4,6744 \pm 0,001$	-
800	A6	$3,9536 \pm 0,0007$	-
800	B1	$3,5379 \pm 0,001$	-
800	B2	$3,3906 \pm 0,0007$	-
800	В3	$4,7471\pm0,0012$	-
800	B4	$5,378 \pm 0,0016$	-
800	B5	$4,8598 \pm 0,0018$	-
800	В6	$4,0781 \pm 0,001$	-
800	C1	$3,7204 \pm 0,0008$	-
800	C2	$3,4271 \pm 0,0006$	-
800	C3	$4,6634 \pm 0,0009$	-
800	C4	$5,1741 \pm 0,0013$	-
800	C5	$4,7166 \pm 0,0012$	-
800	C6	$3,8683 \pm 0,0008$	-
800	co	$155,6614 \pm 1,7961$	-
800	D1	$3,6318 \pm 0,0009$	-
800	D2	$3,3402 \pm 0,0006$	-
800	D3	$4,5959 \pm 0,0008$	-
800	D4	$5,2404 \pm 0,0013$	-
800	D5	$4,8272 \pm 0,0018$	-
800	D6	$3,9889 \pm 0,0012$	-
800	E1	$3,7677 \pm 0,0009$	-
800	E2	$3,5033 \pm 0,0006$	-
800	E3	$4,8032 \pm 0,0009$	-
800	E4	$5,4702 \pm 0,0011$	-
800	E5	$4,907 \pm 0,0014$	-
800	E6	$4,0674 \pm 0,001$	-
800	F1	$3,7132 \pm 0,0007$	-
800	F2	$3,4674 \pm 0,0006$	-
Fortsetzung auf der nächsten Seite			

G [17]	C .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
800	F3	$4,831 \pm 0,0009$	-	
800	F4	$5,4846 \pm 0,0011$	-	
800	F5	$4,9508 \pm 0,0012$	-	
800	F6	$4,1696 \pm 0,0009$	-	
900	A1	$3,1304 \pm 0,0008$	-	
900	A2	$2,9464 \pm 0,0006$	-	
900	A3	$4,2387 \pm 0,001$	-	
900	A4	$4,7216 \pm 0,0011$	-	
900	A5	$4,2326 \pm 0,001$	-	
900	A6	$3,5611 \pm 0,0007$	-	
900	B1	$3,0989 \pm 0,001$	-	
900	B2	$2,9999 \pm 0,0007$	-	
900	В3	$4,3164 \pm 0,0012$	-	
900	B4	$4,9036 \pm 0,0016$	-	
900	В5	$4,4058 \pm 0,0018$	-	
900	В6	$3,6778 \pm 0,001$	-	
900	C1	$3,2431 \pm 0,0007$	-	
900	C2	$3,0178 \pm 0,0006$	-	
900	C3	$4,2354 \pm 0,0009$	-	
900	C4	$4,7124\pm0,0013$	-	
900	C5	$4,275 \pm 0,0012$	-	
900	C6	$3,4811 \pm 0,0008$	-	
900	co	$140,0502 \pm 1,6406$	-	
900	D1	$3,1784 \pm 0,0008$	-	
900	D2	$2,9573 \pm 0,0006$	-	
900	D3	$4,185 \pm 0,0008$	-	
900	D4	$4,7779\pm0,0014$	-	
900	D5	$4,3726 \pm 0,0018$	-	
900	D6	$3,5904 \pm 0,0012$	-	
900	E1	$3,3007 \pm 0,0008$	-	
900	E2	$3,0827 \pm 0,0006$	-	
900	E3	$4,372 \pm 0,0009$	-	
900	E4	$4,\!9826\pm0,\!0011$	-	
900	E5	$4,4475\pm0,0014$	-	
900	E6	$3,6613 \pm 0,001$	-	
900	F1	$3,2504 \pm 0,0007$	-	
900	F2	$3,0667 \pm 0,0006$	-	
900	F3	$4,3959 \pm 0,0009$	-	
900	F4	$5,0001 \pm 0,0011$	-	
900	F5	$4,4876 \pm 0,0011$	-	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channing on [V]	Segment	Kapazität [pF]		
Spannungen [V]	Segment	S002	B005	
900	F6	$3,743 \pm 0,0009$	-	
1000	A1	$2,7678\pm0,0008$	$3,3984 \pm 0,0055$	
1000	A2	$2,6219 \pm 0,0006$	$2,453 \pm 0,0039$	
1000	A3	$3,8761 \pm 0,001$	$3,3182 \pm 0,0053$	
1000	A4	$4,3401 \pm 0,0011$	$3,5123 \pm 0,0056$	
1000	A5	$3,9078 \pm 0,001$	$2,5995 \pm 0,0042$	
1000	A6	$3,4044 \pm 0,0007$	$2,0056 \pm 0,0032$	
1000	B1	$2,7336 \pm 0,0009$	$2,9313 \pm 0,0047$	
1000	B2	$2,6715\pm0,0007$	$2,1526 \pm 0,0034$	
1000	В3	$3,9464 \pm 0,0012$	$3,0779 \pm 0,0049$	
1000	B4	$4,5058\pm0,0016$	$3,4013 \pm 1,387$	
1000	B5	$4,0628\pm0,0018$	$2,7598 \pm 0,0044$	
1000	В6	$3,5157 \pm 0,001$	$2,1646 \pm 0,0035$	
1000	C1	$2,\!8622\pm0,\!0007$	$2,9452\pm0,0047$	
1000	C2	$2,6885 \pm 0,0005$	$2,1643 \pm 0,0035$	
1000	C3	$3,8676 \pm 0,0009$	$3,0337 \pm 0,0049$	
1000	C4	$4,3251\pm0,0012$	$3,1588 \pm 0,0051$	
1000	C5	$3,9472 \pm 0,0012$	$2,4441 \pm 0,0039$	
1000	C6	$3,3161 \pm 0,0008$	$1,8472 \pm 0,0029$	
1000	co	$128,\!2368\pm1,\!5288$	$101,1199 \pm 3,4495$	
1000	D1	$2,8109 \pm 0,0008$	$3,1424 \pm 0,005$	
1000	D2	$2,6353 \pm 0,0005$	$2,4362 \pm 0,0039$	
1000	D3	$3,8317 \pm 0,0008$	$3,3141 \pm 0,0053$	
1000	D4	$4,3839 \pm 0,0014$	$3,6819 \pm 0,0059$	
1000	D5	$4,0334\pm0,0018$	$2,8168 \pm 0,0045$	
1000	D6	$3,4034 \pm 0,0012$	$2,1727 \pm 0,0035$	
1000	E1	$2,9186 \pm 0,0008$	$3,4292 \pm 0,0055$	
1000	E2	$2,7465\pm0,0006$	$2,4816 \pm 0,004$	
1000	E3	$4,0062 \pm 0,0009$	$3,3311 \pm 0,0053$	
1000	E4	$4,5849\pm0,0011$	$3,6742 \pm 0,0059$	
1000	E5	$4,1026 \pm 0,0014$	$2,831 \pm 0,0046$	
1000	E6	$3,4727 \pm 0,001$	$2,2062 \pm 0,0035$	
1000	F1	$2,\!8703\pm0,\!0007$	$3,174 \pm 0,0051$	
1000	F2	$2,7314 \pm 0,0006$	$2,1449 \pm 0,0034$	
1000	F3	$4,\!0258\pm0,\!0009$	$3,0093 \pm 0,0048$	
1000	F4	$4,\!5948\pm0,\!0011$	$3,2823 \pm 0,0053$	
1000	F5	$4{,}151\pm0{,}0012$	$2,\!5564 \pm 0,\!0041$	
1000	F6	$3,5727 \pm 0,0009$	$2,0681 \pm 0,0033$	
1100	A1	$2,4604 \pm 0,0008$	-	
1100	A2	$2,\!3451\pm0,\!0006$	-	
Fortsetzung auf der nächsten Seite				

G [17]	G ,	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
1100	A3	$3,5625 \pm 0,001$	-	
1100	A4	$4,0002 \pm 0,0011$	-	
1100	A5	$3,5946 \pm 0,001$	-	
1100	A6	$3,1251 \pm 0,0007$	-	
1100	B1	$2,4291 \pm 0,0009$	-	
1100	B2	$2,3909 \pm 0,0006$	-	
1100	В3	$3,628 \pm 0,0012$	-	
1100	B4	$4,1575 \pm 0,0016$	-	
1100	B5	$3,7437 \pm 0,0018$	-	
1100	В6	$3,2182 \pm 0,001$	-	
1100	C1	$2,5418 \pm 0,0007$	-	
1100	C2	$2,4014 \pm 0,0005$	-	
1100	C3	$3,5516 \pm 0,0008$	-	
1100	C4	$3,98 \pm 0,0012$	-	
1100	C5	$3,6302 \pm 0,0012$	-	
1100	C6	$3,0437 \pm 0,0008$	-	
1100	co	$116,9595 \pm 1,4268$	-	
1100	D1	$2,4938 \pm 0,0008$	-	
1100	D2	$2,\!3575\pm0,\!0005$	-	
1100	D3	$3,5215 \pm 0,0008$	-	
1100	D4	$4,0498 \pm 0,0013$	-	
1100	D5	$3,7109 \pm 0,0017$	-	
1100	D6	$3,1201 \pm 0,0012$	-	
1100	E1	$2,5923 \pm 0,0008$	-	
1100	E2	$2,4482 \pm 0,0006$	-	
1100	E3	$3,6684 \pm 0,0009$	-	
1100	E4	$4,2222 \pm 0,0011$	-	
1100	E5	$3,7777\pm0,0014$	-	
1100	E6	$3,1828 \pm 0,0009$	-	
1100	F1	$2,\!5622\pm0,\!0007$	-	
1100	F2	$2,4477 \pm 0,0005$	-	
1100	F3	$3,6946 \pm 0,0009$	-	
1100	F4	$4,\!2261\pm0,\!0011$	-	
1100	F5	$3,8074 \pm 0,0012$	-	
1100	F6	$3,2724 \pm 0,0009$	-	
1250	A1	$2,1106 \pm 0,0008$	$2,7125 \pm 0,001$	
1250	A2	$2,004 \pm 0,0006$	$1,9099 \pm 0,0006$	
1250	A3	$3,1518 \pm 0,001$	$2,7213 \pm 0,0009$	
1250	A4	$3,5666 \pm 0,0011$	$2,9064 \pm 0,001$	
1250	A5	$3,1866 \pm 0,001$	$2,1634 \pm 0,0008$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

G [X7]	G	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
1250	A6	$2,7623 \pm 0,0007$	$1,7673 \pm 0,0006$	
1250	B1	$2,0732 \pm 0,0009$	$2,2765 \pm 0,0009$	
1250	B2	$2,0391 \pm 0,0006$	$1,645 \pm 0,0006$	
1250	В3	$3,2146 \pm 0,0011$	$2,4929 \pm 0,0009$	
1250	B4	$3,7101 \pm 0,0016$	$2,7925 \pm 0,0011$	
1250	B5	$3,323 \pm 0,0018$	$2,2814 \pm 0,0008$	
1250	В6	$2,8422 \pm 0,001$	$1,9047 \pm 0,0007$	
1250	C1	$2,1786 \pm 0,0007$	$2,2841 \pm 0,0008$	
1250	C2	$2,0575\pm0,0005$	$1,6592 \pm 0,0005$	
1250	С3	$3,1499 \pm 0,0009$	$2,444 \pm 0,0008$	
1250	C4	$3,5624 \pm 0,0012$	$2,5664 \pm 0,0009$	
1250	C5	$3,2158 \pm 0,0012$	$2,0139 \pm 0,0007$	
1250	C6	$2,6866 \pm 0,0008$	$1,6143 \pm 0,0005$	
1250	co	$102,\!8357\pm1,\!3058$	$82,1427 \pm 3,0324$	
1250	D1	$2,1375 \pm 0,0007$	$2,4541 \pm 0,0009$	
1250	D2	$2,0131 \pm 0,0005$	$1,8869 \pm 0,0006$	
1250	D3	$3,1172 \pm 0,0008$	$2,7074 \pm 0,0009$	
1250	D4	$3,6036 \pm 0,0013$	$3,0344 \pm 0,0013$	
1250	D5	$3,2909 \pm 0,0017$	$2,3312 \pm 0,001$	
1250	D6	$2,7526\pm0,0012$	$1,8969 \pm 0,0006$	
1250	E1	$2,2268 \pm 0,0008$	$2,6956 \pm 0,001$	
1250	E2	$2,0966 \pm 0,0005$	$1,8889 \pm 0,0006$	
1250	E3	$3,2544 \pm 0,0009$	$2,6816 \pm 0,0009$	
1250	E4	$3,7668 \pm 0,0011$	$2,9874 \pm 0,0011$	
1250	E5	$3,3463 \pm 0,0014$	$2,3362 \pm 0,0009$	
1250	E6	$2,7978\pm0,0009$	$1,9298 \pm 0,0006$	
1250	F1	$2,1968 \pm 0,0006$	$2,4945 \pm 0,0009$	
1250	F2	$2,0934 \pm 0,0005$	$1,6415 \pm 0,0005$	
1250	F3	$3,2762 \pm 0,0009$	$2,424 \pm 0,0008$	
1250	F4	$3,7737\pm0,0011$	$2,6733 \pm 0,0009$	
1250	F5	$3,3678 \pm 0,0011$	$2,1068 \pm 0,0008$	
1250	F6	$2,8894 \pm 0,0009$	$1,8167 \pm 0,0006$	
1400	A1	$1,\!8489\pm0,\!0007$	-	
1400	A2	$1{,}7225\pm0{,}0005$	-	
1400	A3	$2,\!7958\pm0,\!001$	-	
1400	A4	$3,1915 \pm 0,0011$	-	
1400	A5	$2,\!8462\pm0,\!001$	-	
1400	A6	$2,\!4565\pm0,\!0007$	-	
1400	B1	$1,8181 \pm 0,0009$	-	
1400	B2	$1,\!7601\pm0,\!0006$	-	
Fortsetzung auf der nächsten Seite				

G [TT]	G .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
1400	В3	$2,8517 \pm 0,0012$	-	
1400	B4	$3,3132 \pm 0,0016$	_	
1400	В5	$2,958 \pm 0,0018$	-	
1400	В6	$2,5196 \pm 0,001$	-	
1400	C1	$1,9059 \pm 0,0007$	-	
1400	C2	$1,7703 \pm 0,0005$	-	
1400	С3	$2,7971 \pm 0,0008$	-	
1400	C4	$3,1848 \pm 0,0012$	-	
1400	C5	$2,8615 \pm 0,0012$	-	
1400	С6	$2,3858 \pm 0,0008$	-	
1400	co	$91,0374 \pm 1,2107$	-	
1400	D1	$1,8724 \pm 0,0007$	-	
1400	D2	$1,7382 \pm 0,0005$	-	
1400	D3	$2,7674 \pm 0,0008$	-	
1400	D4	$3,237 \pm 0,0014$	-	
1400	D5	$2,9277 \pm 0,0017$	-	
1400	D6	$2,4401 \pm 0,0012$	-	
1400	E1	$1,9576 \pm 0,0008$	-	
1400	E2	$1,8087 \pm 0,0005$	-	
1400	E3	$2,8906 \pm 0,0009$	-	
1400	E4	$3,3677 \pm 0,0011$	-	
1400	E5	$2,978 \pm 0,0014$	-	
1400	E6	$2,4807 \pm 0,0009$	-	
1400	F1	$1,9366 \pm 0,0006$	-	
1400	F2	$1,8049 \pm 0,0005$	-	
1400	F3	$2,9066 \pm 0,0009$	-	
1400	F4	$3,3765 \pm 0,0011$	-	
1400	F5	$2,9967 \pm 0,0011$	-	
1400	F6	$2,5625 \pm 0,0009$	-	
1500	A1	$1,7183 \pm 0,0008$	$2,3034 \pm 0,001$	
1500	A2	$1,\!5701 \pm 0,\!0005$	$1,5332 \pm 0,0006$	
1500	A3	$2,\!5859\pm0,\!0009$	$2,2561 \pm 0,0009$	
1500	A4	$2,\!9719\pm0,\!0011$	$2,4397 \pm 0,001$	
1500	A5	$2,6427 \pm 0,001$	$1,8865 \pm 0,0008$	
1500	A6	$2,2821 \pm 0,0007$	$1,6559 \pm 0,0006$	
1500	B1	$1,6839 \pm 0,0009$	$1,8875 \pm 0,0009$	
1500	B2	$1,6005 \pm 0,0006$	$1,\!2895\pm0,\!0005$	
1500	В3	$2,6446 \pm 0,0011$	$2,0184 \pm 0,0009$	
1500	B4	$3,0883 \pm 0,0016$	$2,3088 \pm 0,001$	
1500	B5	$2,7478\pm0,0018$	$1,9735 \pm 0,0009$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]
	Beginein	S002	B005
1500	В6	$2,3411 \pm 0,001$	$1,779 \pm 0,0007$
1500	C1	$1,7644 \pm 0,0007$	$1,873 \pm 0,0008$
1500	C2	$1,\!6074\pm0,\!0005$	$1,302 \pm 0,0005$
1500	C3	$2,5832 \pm 0,0008$	$1,9838 \pm 0,0007$
1500	C4	$2,9626 \pm 0,0012$	$2,1219 \pm 0,0009$
1500	C5	$2,\!6567\pm0,\!0012$	$1,7369 \pm 0,0007$
1500	C6	$2,21 \pm 0,0008$	$1,5022 \pm 0,0005$
1500	co	$84,315 \pm 1,159$	$69{,}1841 \pm 2{,}7715$
1500	D1	$1,7368 \pm 0,0007$	$2,0396 \pm 0,0009$
1500	D2	$1,581 \pm 0,0005$	$1,4957 \pm 0,0006$
1500	D3	$2,5589 \pm 0,0008$	$2,2228 \pm 0,0009$
1500	D4	$3,0033 \pm 0,0013$	$2,5329 \pm 0,0012$
1500	D5	$2,7179\pm0,0017$	$2,0291 \pm 0,001$
1500	D6	$2,2575 \pm 0,0011$	$1,775 \pm 0,0007$
1500	E1	$1,8238 \pm 0,0008$	$2,2318 \pm 0,001$
1500	E2	$1,6482 \pm 0,0005$	$1,4853 \pm 0,0006$
1500	E3	$2,6804 \pm 0,0009$	$2,1842 \pm 0,0009$
1500	E4	$3,1384 \pm 0,0011$	$2,4671 \pm 0,0011$
1500	E5	$2,7537 \pm 0,0014$	$2,0127 \pm 0,0009$
1500	E6	$2,2925 \pm 0,0009$	$1,7976 \pm 0,0007$
1500	F1	$1,8024 \pm 0,0006$	$2,0921 \pm 0,0009$
1500	F2	$1,6462 \pm 0,0005$	$1,2876 \pm 0,0005$
1500	F3	$2,6919 \pm 0,0009$	$1,9669 \pm 0,0008$
1500	F4	$3,1507 \pm 0,0011$	$2,204 \pm 0,0009$
1500	F5	$2,7937 \pm 0,0011$	$1,8155 \pm 0,0008$
1500	F6	$2,3763 \pm 0,0009$	$1,6931 \pm 0,0007$
1750	A1	$1,4944 \pm 0,0008$	$2,0688 \pm 0,0011$
1750	A2	$1,2757 \pm 0,0005$	$1,2672 \pm 0,0006$
1750	A3	$2,1386 \pm 0,0009$	$1,8673 \pm 0,0009$
1750	A4	$2,4913 \pm 0,0011$	$2,086 \pm 0,001$
1750	A5	$2,2211 \pm 0,001$	$1,7383 \pm 0,0008$
1750	A6	$1,9563 \pm 0,0007$	$1,6175 \pm 0,0007$
1750	B1	$1,4537 \pm 0,0009$	$1,6437 \pm 0,0009$
1750	B2	$1,\!2967 \pm 0,\!0006$	$1,0443 \pm 0,0006$
1750	В3	$2,1939 \pm 0,0011$	$1,6387 \pm 0,0008$
1750	B4	$2,5916 \pm 0,0016$	$1,9446 \pm 0,001$
1750	В5	$2,3101 \pm 0,0018$	$1,8056 \pm 0,0009$
1750	В6	$1,9978 \pm 0,001$	$1,742 \pm 0,0008$
1750	C1	$1,5299 \pm 0,0007$	$1,626 \pm 0,0008$
1750	C2	$1,3046 \pm 0,0005$	$1,0473 \pm 0,0005$
Fortsetzung auf der nächsten Seite			

G [37]	G 4	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
1750	C3	$2,1407 \pm 0,0008$	$1,6186 \pm 0,0007$	
1750	C4	$2,4951 \pm 0,0012$	$1,7842 \pm 0,0008$	
1750	C5	$2,225 \pm 0,0011$	$1,5837 \pm 0,0008$	
1750	C6	$1,8756 \pm 0,0008$	$1,4635 \pm 0,0006$	
1750	co	$70,8166 \pm 1,0612$	$60,4257 \pm 2,6076$	
1750	D1	$1,507 \pm 0,0007$	$1,7981 \pm 0,0009$	
1750	D2	$1,2841 \pm 0,0005$	$1,2226 \pm 0,0006$	
1750	D3	$2,1221 \pm 0,0008$	$1,83 \pm 0,0008$	
1750	D4	$2,5221 \pm 0,0013$	$2,1583 \pm 0,0012$	
1750	D5	$2,2808 \pm 0,0017$	$1,8658 \pm 0,001$	
1750	D6	$1,9094 \pm 0,0011$	$1,7319 \pm 0,0008$	
1750	E1	$1,\!5932\pm0,\!0008$	$1,9646 \pm 0,001$	
1750	E2	$1,3442 \pm 0,0005$	$1,1988 \pm 0,0006$	
1750	E3	$2,2104 \pm 0,0009$	$1,7751 \pm 0,0008$	
1750	E4	$2,627 \pm 0,0011$	$2,0717 \pm 0,001$	
1750	E5	$2,3048 \pm 0,0014$	$1,8298 \pm 0,001$	
1750	E6	$1,9404\pm0,0009$	$1,7541 \pm 0,0008$	
1750	F1	$1,5738\pm0,0007$	$1,8501 \pm 0,0009$	
1750	F2	$1,3404\pm0,0005$	$1,0395 \pm 0,0006$	
1750	F3	$2,2339 \pm 0,0008$	$1,5946 \pm 0,0007$	
1750	F4	$2,6459\pm0,0011$	$1,8522 \pm 0,0009$	
1750	F5	$2,3514 \pm 0,0011$	$1,6512 \pm 0,0008$	
1750	F6	$2,0336 \pm 0,0009$	$1,6501 \pm 0,0007$	
2000	A1	$1,3678 \pm 0,0008$	$1,9419 \pm 0,0013$	
2000	A2	$1,0773\pm0,0005$	$1,0918 \pm 0,0005$	
2000	A3	$1,7808\pm0,0009$	$1,5729 \pm 0,0008$	
2000	A4	$2,0844 \pm 0,0011$	$1,8612 \pm 0,001$	
2000	A5	$1,8832 \pm 0,0009$	$1,6858 \pm 0,0009$	
2000	A6	$1,7247\pm0,0008$	$1,6192 \pm 0,0008$	
2000	B1	$1,3288 \pm 0,0009$	$1,5224 \pm 0,0011$	
2000	B2	$1,0939 \pm 0,0006$	$0,8802 \pm 0,0005$	
2000	В3	$1,\!8221\pm0,\!0011$	$1,362 \pm 0,0008$	
2000	B4	$2,1668 \pm 0,0016$	$1,7132 \pm 0,0012$	
2000	В5	$1,9504 \pm 0,0017$	$1,7339 \pm 0,0011$	
2000	В6	$1,754 \pm 0,001$	$1,7319 \pm 0,0009$	
2000	C1	$1,3937 \pm 0,0007$	$1,4908 \pm 0,0008$	
2000	C2	$1,\!0954\pm0,\!0005$	0.8755 ± 0.0004	
2000	C3	$1,7795\pm0,0008$	$1,3327 \pm 0,0006$	
2000	C4	$2,\!0797\pm0,\!0012$	$1,5709 \pm 0,0009$	
2000	C5	$1,\!8786\pm0,\!0011$	$1,5184 \pm 0,0008$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]	
Spannungen [v]	Beginent	S002	B005	
2000	C6	$1,6413 \pm 0,0008$	$1,4563 \pm 0,0006$	
2000	co	$60,5692 \pm 0,9923$	$55,0185 \pm 2,5119$	
2000	D1	$1,3793 \pm 0,0008$	$1,66 \pm 0,001$	
2000	D2	$1,0848 \pm 0,0005$	$1,0386 \pm 0,0005$	
2000	D3	$1,7696 \pm 0,0008$	$1,5312 \pm 0,0008$	
2000	D4	$2,1134 \pm 0,0013$	$1,9188 \pm 0,0016$	
2000	D5	$1,9236 \pm 0,0017$	$1,7989 \pm 0,0015$	
2000	D6	$1,667 \pm 0,0012$	$1,7244 \pm 0,0009$	
2000	E1	$1,4615 \pm 0,0008$	$1,8187 \pm 0,0012$	
2000	E2	$1,1361 \pm 0,0005$	$1,0065 \pm 0,0006$	
2000	E3	$1,8383 \pm 0,0008$	$1,4635 \pm 0,0008$	
2000	E4	$2,1976 \pm 0,0011$	$1,8167 \pm 0,0012$	
2000	E5	$1,9559\pm0,0014$	$1,7512 \pm 0,0012$	
2000	E6	$1,7054\pm0,0009$	$1,7451 \pm 0,0009$	
2000	F1	$1,4513 \pm 0,0007$	$1,7206 \pm 0,001$	
2000	F2	$1,1401 \pm 0,0005$	0.8783 ± 0.0004	
2000	F3	$1,8654 \pm 0,0008$	$1,3237 \pm 0,0006$	
2000	F4	$2,2111 \pm 0,001$	$1,6319 \pm 0,0009$	
2000	F5	$1,9802 \pm 0,0011$	$1,5794 \pm 0,001$	
2000	F6	$1,\!7863\pm0,\!0009$	$1,6498 \pm 0,0008$	
2250	A1	$1,3018 \pm 0,0009$	$1,9114 \pm 0,0013$	
2250	A2	0.9505 ± 0.0005	$1,0491 \pm 0,0005$	
2250	A3	$1,4995 \pm 0,0009$	$1,502 \pm 0,0008$	
2250	A4	$1,7351 \pm 0,001$	$1,8135 \pm 0,001$	
2250	A5	$1,6083 \pm 0,0009$	$1,6752 \pm 0,0009$	
2250	A6	$1,557 \pm 0,0008$	$1,6201 \pm 0,0008$	
2250	B1	$1,2585 \pm 0,001$	$1,479 \pm 0,0011$	
2250	B2	0.9607 ± 0.0006	0.8264 ± 0.0005	
2250	В3	$1,534 \pm 0,0011$	$1,2763 \pm 0,0008$	
2250	B4	$1,8045 \pm 0,0015$	$1,6527 \pm 0,0011$	
2250	B5	$1,6708\pm0,0017$	$1,7163 \pm 0,0011$	
2250	B6	$1,5833 \pm 0,001$	$1,7327 \pm 0,001$	
2250	C1	$1,322 \pm 0,0008$	$1,4441 \pm 0,0008$	
2250	C2	$0,9605 \pm 0,0005$	0.8115 ± 0.0004	
2250	C3	$1,4947 \pm 0,0008$	$1,2283 \pm 0,0006$	
2250	C4	$1{,}7306\pm0{,}0011$	$1,509 \pm 0,0008$	
2250	C5	$1,6028 \pm 0,0011$	$1,5015 \pm 0,0008$	
2250	C6	$1,4768 \pm 0,0009$	$1,\!4555\pm0,\!0007$	
2250	co	$52,\!8107\pm0,\!9436$	$53,4459 \pm 2,4849$	
2250	D1	$1,3079 \pm 0,0009$	$1,6176 \pm 0,001$	
Fortsetzung auf der nächsten Seite				

C [X7]	C .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
2250	D2	0.9543 ± 0.0005	0.9754 ± 0.0005	
2250	D3	$1,4901 \pm 0,0008$	$1,4343 \pm 0,0008$	
2250	D4	$1,7592 \pm 0,0012$	$1,848 \pm 0,0015$	
2250	D5	$1,6403 \pm 0,0017$	$1,7818 \pm 0,0015$	
2250	D6	$1,4972 \pm 0,0012$	$1,7257 \pm 0,0009$	
2250	E1	$1,3958 \pm 0,0009$	$1,7766 \pm 0,0012$	
2250	E2	$1,0088 \pm 0,0005$	0.9453 ± 0.0005	
2250	E3	$1,554 \pm 0,0008$	$1,3604 \pm 0,0007$	
2250	E4	$1,8324 \pm 0,001$	$1,7419 \pm 0,0011$	
2250	E5	$1,6658 \pm 0,0013$	$1,7372 \pm 0,0012$	
2250	E6	$1,53 \pm 0,001$	$1,743 \pm 0,0009$	
2250	F1	$1,3858 \pm 0,0008$	$1,6871 \pm 0,001$	
2250	F2	$1,0112 \pm 0,0005$	0.8302 ± 0.0004	
2250	F3	$1,5732 \pm 0,0008$	$1,2446 \pm 0,0006$	
2250	F4	$1,8468 \pm 0,001$	$1,5723 \pm 0,0009$	
2250	F5	$1,6963 \pm 0,0011$	$1,5678 \pm 0,001$	
2250	F6	$1,6101 \pm 0,0009$	$1,652 \pm 0,0008$	
2500	A1	$1,\!2793\pm0,\!0009$	$1,9026 \pm 0,0014$	
2500	A2	0.8943 ± 0.0005	$1,0428 \pm 0,0005$	
2500	A3	$1,3395 \pm 0,0008$	$1,4906 \pm 0,0008$	
2500	A4	$1,5286 \pm 0,001$	$1,8055 \pm 0,0011$	
2500	A5	$1,4989 \pm 0,0009$	$1,6705 \pm 0,0009$	
2500	A6	$1,5159\pm0,0008$	$1,6163 \pm 0,0008$	
2500	B1	$1,2324 \pm 0,0011$	$1,4713 \pm 0,0011$	
2500	B2	0.8995 ± 0.0006	0.8221 ± 0.0005	
2500	В3	$1,3556 \pm 0,001$	$1,2671 \pm 0,0008$	
2500	B4	$1,5777\pm0,0014$	$1,6448 \pm 0,0012$	
2500	В5	$1,549 \pm 0,0017$	$1,7178 \pm 0,0012$	
2500	В6	$1,536 \pm 0,0011$	$1,7385 \pm 0,001$	
2500	C1	$1,2924 \pm 0,0008$	$1,4362 \pm 0,0008$	
2500	C2	0.8971 ± 0.0005	0.8047 ± 0.0004	
2500	C3	$1,3177 \pm 0,0007$	$1,222 \pm 0,0006$	
2500	C4	$1,\!5082\pm0,\!0011$	$1,4961 \pm 0,0008$	
2500	C5	$1,4848 \pm 0,0011$	$1,4987 \pm 0,0008$	
2500	C6	$1,4317 \pm 0,0009$	$1,4517 \pm 0,0007$	
2500	co	$49,0703\pm0,9212$	$53,2683 \pm 2,4819$	
2500	D1	$1,2832 \pm 0,0009$	$1,6105 \pm 0,001$	
2500	D2	$0,898 \pm 0,0005$	$0,9707 \pm 0,0005$	
2500	D3	$1,324 \pm 0,0007$	$1,4289 \pm 0,0008$	
2500	D4	$1,\!5422\pm0,\!0012$	$1,8383 \pm 0,0016$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]
Spannungen [v]	Segment	S002	B005
2500	D5	$1,5217 \pm 0,0017$	$1,783 \pm 0,0016$
2500	D6	$1,\!4522\pm0,\!0013$	$1,7181 \pm 0,0009$
2500	E1	$1,3729 \pm 0,001$	$1,7844 \pm 0,0012$
2500	E2	$0,9524 \pm 0,0005$	0.9412 ± 0.0005
2500	E3	$1,3968 \pm 0,0008$	$1,354 \pm 0,0007$
2500	E4	$1,6204 \pm 0,001$	$1,7359\pm0,0012$
2500	E5	$1,5538 \pm 0,0014$	$1,73 \pm 0,0012$
2500	E6	$1,4896 \pm 0,001$	$1,7376 \pm 0,0009$
2500	F1	$1,3667 \pm 0,0008$	$1,6797 \pm 0,001$
2500	F2	$0,9628 \pm 0,0005$	0.8234 ± 0.0004
2500	F3	$1,4116 \pm 0,0008$	$1,2383 \pm 0,0006$
2500	F4	$1,6368 \pm 0,001$	$1,5743 \pm 0,0009$
2500	F5	$1,5865 \pm 0,0011$	$1,5694 \pm 0,001$
2500	F6	$1,5603 \pm 0,001$	$1,651 \pm 0,0008$
2750	A1	$1,2791 \pm 0,001$	-
2750	A2	0.8961 ± 0.0005	-
2750	A3	$1,3386 \pm 0,0009$	-
2750	A4	$1,5276 \pm 0,001$	-
2750	A5	$1,4951 \pm 0,0009$	-
2750	A6	$1,5139 \pm 0,0008$	-
2750	B1	$1,2319 \pm 0,0011$	-
2750	B2	0.8984 ± 0.0006	-
2750	В3	$1,3524 \pm 0,001$	-
2750	B4	$1,5745 \pm 0,0015$	-
2750	В5	$1,5449 \pm 0,0018$	-
2750	В6	$1,5346 \pm 0,0011$	-
2750	C1	$1,294 \pm 0,0008$	-
2750	C2	0.8978 ± 0.0005	-
2750	C3	$1,3178 \pm 0,0008$	-
2750	C4	$1,5081 \pm 0,0011$	-
2750	C5	$1,4814 \pm 0,0012$	-
2750	C6	$1,4314 \pm 0,0009$	-
2750	co	$49,0235 \pm 0,9209$	-
2750	D1	$1,2842 \pm 0,0009$	-
2750	D2	0.8972 ± 0.0005	-
2750	D3	$1,3223 \pm 0,0007$	-
2750	D4	$1,5393 \pm 0,0012$	-
2750	D5	$1,5156 \pm 0,0018$	-
2750	D6	$1,4504 \pm 0,0013$	-
2750	E1	$1,3706 \pm 0,001$	-
	Fortsetz	ung auf der nächsten Sei	te

G [XX]	G .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
2750	E2	0.9526 ± 0.0005	-	
2750	E3	$1,3922 \pm 0,0008$	-	
2750	E4	$1,6178 \pm 0,001$	-	
2750	E5	$1,5514 \pm 0,0014$	-	
2750	E6	$1,4855 \pm 0,001$	-	
2750	F1	$1,3581 \pm 0,0008$	-	
2750	F2	0.9551 ± 0.0005	-	
2750	F3	$1,418 \pm 0,0008$	-	
2750	F4	$1,6381 \pm 0,001$	-	
2750	F5	$1,5855\pm0,0011$	-	
2750	F6	$1,5722 \pm 0,001$	-	
3000	A1	$1,2756 \pm 0,001$	$1,8967 \pm 0,0014$	
3000	A2	0.8939 ± 0.0005	$1,0423 \pm 0,0005$	
3000	A3	$1,3316 \pm 0,0009$	$1,4927 \pm 0,0008$	
3000	A4	$1,5241 \pm 0,001$	$1,8047 \pm 0,0011$	
3000	A5	$1,4945 \pm 0,001$	$1,6601 \pm 0,0009$	
3000	A6	$1,5114 \pm 0,0008$	$1,6043 \pm 0,0008$	
3000	B1	$1,\!2311\pm0,\!0012$	$1,4629 \pm 0,0011$	
3000	B2	0.8967 ± 0.0006	0.8151 ± 0.0005	
3000	В3	$1,3541 \pm 0,0011$	$1,2631 \pm 0,0008$	
3000	B4	$1,\!5759\pm0,\!0015$	$1,6474 \pm 0,0012$	
3000	B5	$1,\!5471\pm0,\!0019$	$1,7151\pm0,0012$	
3000	В6	$1,\!5352\pm0,\!0011$	$1,7223 \pm 0,001$	
3000	C1	$1,2949 \pm 0,0009$	$1,4279 \pm 0,0008$	
3000	C2	$0,8963 \pm 0,0005$	$0,8017 \pm 0,0004$	
3000	C3	$1,3183 \pm 0,0008$	$1,2153 \pm 0,0006$	
3000	C4	$1,\!5086\pm0,\!0011$	$1,4915 \pm 0,0009$	
3000	C5	$1,4816 \pm 0,0012$	$1,4953 \pm 0,0008$	
3000	C6	$1,4307 \pm 0,0009$	$1,4501 \pm 0,0007$	
3000	co	$48,9981\pm0,9208$	$53,0503 \pm 2,4782$	
3000	D1	$1,2818 \pm 0,001$	$1,602 \pm 0,001$	
3000	D2	0.8974 ± 0.0005	0.9672 ± 0.0005	
3000	D3	$1,\!3191\pm0,\!0007$	$1,418 \pm 0,0008$	
3000	D4	$1,\!5342\pm0,\!0013$	$1,834 \pm 0,0016$	
3000	D5	$1,\!5105\pm0,\!0018$	$1,7722 \pm 0,0016$	
3000	D6	$1,4468 \pm 0,0013$	$1,7097 \pm 0,0009$	
3000	E1	$1,3757 \pm 0,001$	$1,7579\pm0,0012$	
3000	E2	$0,9564 \pm 0,0005$	0.9351 ± 0.0005	
3000	E3	$1,399 \pm 0,0008$	$1,3576 \pm 0,0007$	
3000	E4	$1,621 \pm 0,001$	$1,7278\pm0,0012$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channungan [V]	Segment	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
3000	E5	$1,5488 \pm 0,0014$	$1,7257 \pm 0,0012$	
3000	E6	$1,4829 \pm 0,001$	$1,7393 \pm 0,0009$	
3000	F1	$1,3608 \pm 0,0009$	$1,6782 \pm 0,001$	
3000	F2	0.9575 ± 0.0005	0.8211 ± 0.0004	
3000	F3	$1,4166 \pm 0,0008$	$1,2393 \pm 0,0006$	
3000	F4	$1,6378 \pm 0,001$	$1,5616 \pm 0,0009$	
3000	F5	$1,5809 \pm 0,0012$	$1,5598 \pm 0,001$	
3000	F6	$1,569 \pm 0,001$	$1,6353 \pm 0,0008$	
3250	A1	$1,\!2779 \pm 0,\!001$	-	
3250	A2	0.8954 ± 0.0005	-	
3250	A3	$1,337 \pm 0,0009$	-	
3250	A4	$1,5264 \pm 0,001$	-	
3250	A5	$1,4958 \pm 0,001$	-	
3250	A6	$1,5111 \pm 0,0008$	-	
3250	B1	$1,2334 \pm 0,0012$	-	
3250	B2	$0,9004 \pm 0,0006$	-	
3250	В3	$1,3488 \pm 0,0011$	-	
3250	B4	$1,5742 \pm 0,0016$	-	
3250	В5	$1,5442 \pm 0,0019$	-	
3250	В6	$1,5317 \pm 0,0011$	-	
3250	C1	$1,2917 \pm 0,0008$	-	
3250	C2	0.8961 ± 0.0005	-	
3250	C3	$1,3162 \pm 0,0008$	-	
3250	C4	$1,5037 \pm 0,0011$	-	
3250	C5	$1,4818 \pm 0,0012$	-	
3250	C6	$1,4274 \pm 0,0009$	-	
3250	co	$48,9838 \pm 0,9207$	-	
3250	D1	$1,2828 \pm 0,001$	-	
3250	D2	0.8988 ± 0.0005	-	
3250	D3	$1,3212 \pm 0,0007$	-	
3250	D4	$1,5358 \pm 0,0013$	-	
3250	D5	$1,5138 \pm 0,0019$	-	
3250	D6	$1,4485 \pm 0,0013$	-	
3250	E1	$1,3729 \pm 0,001$	-	
3250	E2	0.9547 ± 0.0005	-	
3250	E3	$1,3957 \pm 0,0008$	-	
3250	E4	$1,6192 \pm 0,001$	-	
3250	E5	$1,5497 \pm 0,0015$	-	
3250	E6	$1,4827 \pm 0,001$	-	
3250	F1	$1,3614 \pm 0,0009$	-	
Fortsetzung auf der nächsten Seite				

C [X7]	G .	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
3250	F2	0.9583 ± 0.0005	-	
3250	F3	$1,4148 \pm 0,0008$	-	
3250	F4	$1,6344 \pm 0,001$	-	
3250	F5	$1,58 \pm 0,0011$	-	
3250	F6	$1,5657 \pm 0,001$	-	
3500	A1	$1,\!276 \pm 0,\!001$	$1,888 \pm 0,0014$	
3500	A2	0.8948 ± 0.0005	$1,0375 \pm 0,0005$	
3500	A3	$1,3401 \pm 0,0009$	$1,4853 \pm 0,0008$	
3500	A4	$1,5258 \pm 0,001$	$1,7971 \pm 0,0011$	
3500	A5	$1,4951 \pm 0,001$	$1,6647 \pm 0,0009$	
3500	A6	$1,5122 \pm 0,0008$	$1,6085 \pm 0,0008$	
3500	B1	$1,2316 \pm 0,0012$	$1,4597 \pm 0,0011$	
3500	B2	$0,8981 \pm 0,0006$	0.8153 ± 0.0005	
3500	В3	$1,3496 \pm 0,0011$	$1,2549 \pm 0,0008$	
3500	B4	$1,\!5744\pm0,\!0016$	$1,6399 \pm 0,0012$	
3500	B5	$1,5415 \pm 0,002$	$1,7052 \pm 0,0012$	
3500	В6	$1{,}5324\pm0{,}0012$	$1,7229 \pm 0,001$	
3500	C1	$1,2926 \pm 0,0009$	$1,4229 \pm 0,0008$	
3500	C2	$0,8971 \pm 0,0005$	$0,7973 \pm 0,0004$	
3500	C3	$1,3143 \pm 0,0008$	$1,2146 \pm 0,0006$	
3500	C4	$1,5068 \pm 0,0011$	$1,4854 \pm 0,0009$	
3500	C5	$1,4813 \pm 0,0012$	$1,4931 \pm 0,0009$	
3500	C6	$1,4314 \pm 0,0009$	$1,4459 \pm 0,0007$	
3500	co	$48,9693\pm0,9206$	$52,9002 \pm 2,4756$	
3500	D1	$1,2816 \pm 0,001$	$1,5967 \pm 0,001$	
3500	D2	$0,8967 \pm 0,0005$	0.9638 ± 0.0005	
3500	D3	$1,3212 \pm 0,0008$	$1,417 \pm 0,0008$	
3500	D4	$1,\!5376\pm0,\!0013$	$1,8335 \pm 0,0016$	
3500	D5	$1,\!5132\pm0,\!0018$	$1,7776 \pm 0,0016$	
3500	D6	$1,4476 \pm 0,0014$	$1,7125 \pm 0,0009$	
3500	E1	$1,\!3701\pm0,\!0011$	$1,7532 \pm 0,0012$	
3500	E2	$0,9519 \pm 0,0005$	0.9335 ± 0.0005	
3500	E3	$1,3893 \pm 0,0008$	$1,3445 \pm 0,0007$	
3500	E4	$1,\!6182\pm0,\!001$	$1,7259 \pm 0,0012$	
3500	E5	$1,\!5505\pm0,\!0015$	$1,7194 \pm 0,0012$	
3500	E6	$1,\!4822\pm0,\!001$	$1,7259 \pm 0,0009$	
3500	F1	$1,3596 \pm 0,0009$	$1,6631 \pm 0,001$	
3500	F2	$0,9585 \pm 0,0005$	0.8206 ± 0.0005	
3500	F3	$1,4142 \pm 0,0008$	$1,2262 \pm 0,0006$	
3500	F4	$1,634 \pm 0,001$	$1,5569 \pm 0,0009$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]		
	Beginent	S002	B005		
3500	F5	$1,5849 \pm 0,0012$	$1,5597 \pm 0,001$		
3500	F6	$1,5628 \pm 0,001$	$1,6317 \pm 0,0008$		
3750	A1	$1,2753 \pm 0,001$	-		
3750	A2	$0,894 \pm 0,0005$	-		
3750	A3	$1,3346 \pm 0,0009$	-		
3750	A4	$1,5248 \pm 0,001$	-		
3750	A5	$1,4955 \pm 0,001$	-		
3750	A6	$1,5115 \pm 0,0008$	-		
3750	B1	$1,2313 \pm 0,0012$	-		
3750	B2	0.8991 ± 0.0006	-		
3750	В3	$1,3499 \pm 0,0011$	-		
3750	B4	$1,\!5743\pm0,\!0016$	-		
3750	В5	$1,5395 \pm 0,0019$	-		
3750	В6	$1,531 \pm 0,0011$	-		
3750	C1	$1,2941 \pm 0,0008$	-		
3750	C2	$0,899 \pm 0,0005$	-		
3750	C3	$1,3164 \pm 0,0007$	-		
3750	C4	$1,5087 \pm 0,0011$	-		
3750	C5	$1,4788 \pm 0,0012$	-		
3750	C6	$1,4289 \pm 0,0009$	-		
3750	co	$48,9696 \pm 0,9206$	-		
3750	D1	$1,2831 \pm 0,001$	-		
3750	D2	0.8973 ± 0.0005	-		
3750	D3	$1,3206 \pm 0,0007$	-		
3750	D4	$1,5367 \pm 0,0012$	-		
3750	D5	$1,5112 \pm 0,0018$	-		
3750	D6	$1,4476 \pm 0,0013$	-		
3750	E1	$1,3693 \pm 0,001$	-		
3750	E2	0.9512 ± 0.0005	-		
3750	E3	$1,3918 \pm 0,0008$	-		
3750	E4	$1,6161 \pm 0,001$	-		
3750	E5	$1,5525 \pm 0,0015$	-		
3750	E6	$1,4853 \pm 0,0011$	-		
3750	F1	$1,3618 \pm 0,0009$	-		
3750	F2	0.9563 ± 0.0005	-		
3750	F3	$1,4156 \pm 0,0008$	-		
3750	F4	$1,6367 \pm 0,001$	-		
3750	F5	$1,5837 \pm 0,0012$	-		
3750	F6	$1,5662 \pm 0,001$	-		
4000	A1	$1,\!2748 \pm 0,\!001$	$1,883 \pm 0,0014$		
	Fortsetzung auf der nächsten Seite				

G [77]	G .	Kapazität [pF]		
Spannungen [V]	Segment	S002	B005	
4000	A2	0.8934 ± 0.0005	$1,0345 \pm 0,0005$	
4000	A3	$1,332 \pm 0,0009$	$1,4783 \pm 0,0008$	
4000	A4	$1,5242 \pm 0,001$	$1,7928 \pm 0,0011$	
4000	A5	$1,4938 \pm 0,001$	$1,6629 \pm 0,0009$	
4000	A6	$1,51 \pm 0,0008$	$1,6062 \pm 0,0008$	
4000	B1	$1,2311 \pm 0,0012$	$1,4573 \pm 0,0011$	
4000	B2	0.8976 ± 0.0006	0.8173 ± 0.0005	
4000	В3	$1,3526 \pm 0,0011$	$1,2526 \pm 0,0008$	
4000	B4	$1,5749 \pm 0,0016$	$1,6302 \pm 0,0012$	
4000	B5	$1,\!5423\pm0,\!0019$	$1,7021 \pm 0,0012$	
4000	В6	$1,\!5323\pm0,\!0012$	$1,7129 \pm 0,001$	
4000	C1	$1,2938 \pm 0,0008$	$1,4246 \pm 0,0008$	
4000	C2	$0,8997 \pm 0,0005$	$0,805 \pm 0,0004$	
4000	C3	$1,3164 \pm 0,0008$	$1,2156 \pm 0,0006$	
4000	C4	$1,\!5085\pm0,\!0011$	$1,4905 \pm 0,0009$	
4000	C5	$1,479 \pm 0,0011$	$1,4924 \pm 0,0009$	
4000	C6	$1,4267 \pm 0,0009$	$1,4483 \pm 0,0007$	
4000	co	$48,9667\pm0,9206$	$52,8144 \pm 2,4742$	
4000	D1	$1,279 \pm 0,001$	$1,5973 \pm 0,001$	
4000	D2	0.8945 ± 0.0005	$0,9649 \pm 0,0005$	
4000	D3	$1,3207 \pm 0,0007$	$1,4138 \pm 0,0008$	
4000	D4	$1,5377 \pm 0,0013$	$1,8265 \pm 0,0016$	
4000	D5	$1,516 \pm 0,0019$	$1,7693 \pm 0,0016$	
4000	D6	$1,4465 \pm 0,0013$	$1,711 \pm 0,0009$	
4000	E1	$1,371 \pm 0,001$	$1,7474 \pm 0,0012$	
4000	E2	0.9516 ± 0.0005	$0,9304 \pm 0,0005$	
4000	E3	$1,3957 \pm 0,0008$	$1,337 \pm 0,0007$	
4000	E4	$1,6169 \pm 0,001$	$1,7217 \pm 0,0012$	
4000	E5	$1,\!5511\pm0,\!0015$	$1,7238 \pm 0,0013$	
4000	E6	$1,4844 \pm 0,001$	$1,7297 \pm 0,0009$	
4000	F1	$1,3604 \pm 0,0009$	$1,6644 \pm 0,001$	
4000	F2	$0,9564 \pm 0,0005$	0.8195 ± 0.0005	
4000	F3	$1,4159 \pm 0,0008$	$1,2237 \pm 0,0006$	
4000	F4	$1,6369 \pm 0,001$	$1,5532 \pm 0,0009$	
4000	F5	$1,\!5825\pm0,\!0011$	$1,548 \pm 0,001$	
4000	F6	$1,5664 \pm 0,001$	$1,6262 \pm 0,0008$	
4500	A1	$1,\!275 \pm 0,\!001$	$1,8796 \pm 0,0014$	
4500	A2	$0,8939 \pm 0,0005$	$1,0361 \pm 0,0005$	
4500	A3	$1,3352 \pm 0,0009$	$1,4844 \pm 0,0008$	
4500	A4	$1,5242\pm0,001$	$1,7941 \pm 0,0011$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spannungen [V]	Segment	Kapazit	ät [pF]	
Spannungen [V]	Segment	S002	B005	
4500	A5	$1,493 \pm 0,001$	$1,655 \pm 0,0009$	
4500	A6	$1,\!5097\pm0,\!0008$	$1,5991 \pm 0,0008$	
4500	B1	$1,\!2267\pm0,\!0012$	$1,4494 \pm 0,0011$	
4500	B2	$0,896 \pm 0,0006$	0.8106 ± 0.0005	
4500	В3	$1,351 \pm 0,0011$	$1,2556 \pm 0,0008$	
4500	B4	$1,5724 \pm 0,0016$	$1,6388 \pm 0,0012$	
4500	B5	$1,543 \pm 0,002$	$1,7077\pm0,0012$	
4500	В6	$1,5303 \pm 0,0012$	$1,711 \pm 0,001$	
4500	C1	$1,2908 \pm 0,0008$	$1,4167 \pm 0,0008$	
4500	C2	0.8948 ± 0.0005	$0,7973 \pm 0,0004$	
4500	C3	$1,314 \pm 0,0007$	$1,2095 \pm 0,0006$	
4500	C4	$1,\!5045\pm0,\!0011$	$1,484 \pm 0,0009$	
4500	C5	$1,4835 \pm 0,0012$	$1,4871 \pm 0,0009$	
4500	C6	$1,4301 \pm 0,0009$	$1,4398 \pm 0,0007$	
4500	co	$48,9284 \pm 0,9204$	$52,7262 \pm 2,4727$	
4500	D1	$1,\!2786 \pm 0,\!001$	$1,5901 \pm 0,001$	
4500	D2	0.897 ± 0.0005	$0,9606 \pm 0,0005$	
4500	D3	$1,3216 \pm 0,0007$	$1,4087 \pm 0,0008$	
4500	D4	$1,5358 \pm 0,0013$	$1,\!8267\pm0,\!0016$	
4500	D5	$1,5115 \pm 0,0019$	$1,7634 \pm 0,0016$	
4500	D6	$1,4459 \pm 0,0013$	$1,7051\pm0,0009$	
4500	E1	$1,368 \pm 0,0011$	$1,7438 \pm 0,0012$	
4500	E2	0.9503 ± 0.0005	$0,9293 \pm 0,0005$	
4500	E3	$1,3906 \pm 0,0008$	$1,3396 \pm 0,0007$	
4500	E4	$1,6149 \pm 0,001$	$1,7208 \pm 0,0012$	
4500	E5	$1,5524 \pm 0,0016$	$1,7168 \pm 0,0012$	
4500	E6	$1,4839 \pm 0,0011$	$1,7228 \pm 0,0009$	
4500	F1	$1,3598 \pm 0,0009$	$1,6576 \pm 0,001$	
4500	F2	$0,9565 \pm 0,0005$	0.8146 ± 0.0004	
4500	F3	$1,4143 \pm 0,0008$	$1,2254 \pm 0,0006$	
4500	F4	$1,6357 \pm 0,001$	$1,5562 \pm 0,0009$	
4500	F5	$1,5796 \pm 0,0012$	$1,5604 \pm 0,001$	
4500	F6	$1,564 \pm 0,001$	$1,6287 \pm 0,0008$	
5000	A1	$1,2755 \pm 0,001$	-	
5000	A2	0.8945 ± 0.0005	-	
5000	A3	$1,3369 \pm 0,0009$	-	
5000	A4	$1,5256 \pm 0,001$	-	
5000	A5	$1,4943 \pm 0,001$	-	
5000	A6	$1,5087 \pm 0,0008$	-	
5000	B1	$1,2309 \pm 0,0013$	-	
Fortsetzung auf der nächsten Seite				

C Pulsermessungen

Spannungen [V]	Segment	Kapazit	ät [pF]
	Segment	S002	B005
5000	B2	0.8986 ± 0.0007	-
5000	В3	$1,3462 \pm 0,0011$	-
5000	B4	$1,5734 \pm 0,0016$	-
5000	B5	$1,5378 \pm 0,0019$	-
5000	В6	$1,529 \pm 0,0012$	-
5000	C1	$1,2899 \pm 0,0008$	-
5000	C2	0.894 ± 0.0005	-
5000	C3	$1,3145 \pm 0,0008$	-
5000	C4	$1,5046 \pm 0,0011$	-
5000	C5	$1,482 \pm 0,0012$	-
5000	C6	$1,4275 \pm 0,0009$	-
5000	co	$48,9233 \pm 0,9203$	-
5000	D1	$1,2807 \pm 0,001$	-
5000	D2	0.8966 ± 0.0005	-
5000	D3	$1,321 \pm 0,0007$	-
5000	D4	$1,5374 \pm 0,0013$	-
5000	D5	$1,5115 \pm 0,0019$	-
5000	D6	$1,4469 \pm 0,0014$	-
5000	E1	$1,3676 \pm 0,0011$	-
5000	E2	0.9527 ± 0.0005	-
5000	E3	$1,3912 \pm 0,0008$	-
5000	E4	$1,6163 \pm 0,001$	-
5000	E5	$1,5514 \pm 0,0016$	-
5000	E6	$1,4826 \pm 0,0011$	-
5000	F1	$1,3599 \pm 0,0009$	-
5000	F2	$0,9581 \pm 0,0005$	-
5000	F3	$1,4133 \pm 0,0008$	-
5000	F4	$1,6318 \pm 0,001$	-
5000	F5	$1,5794 \pm 0,0011$	-
5000	F6	$1,5612 \pm 0,001$	-

Tabelle C.4: Resultate der Pulsermessung von C005 und C006

Spannungen [V]	Segment	Kapazität [pF]	
	Degment	C005	C006
10	A1	-	$37,8369 \pm 0,0108$
10	A2	-	$28,\!3096\pm0,\!005$
Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Spanninger [1/]	Sogment	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
10	A3	-	$37,6776 \pm 0,0105$	
10	A4	-	$48,934 \pm 0,0306$	
10	A5	-	$47,1937 \pm 0,0692$	
10	A6	-	$38,9009 \pm 0,0229$	
10	B1	-	$37,4124 \pm 0,0095$	
10	B2	-	$26,8698 \pm 0,0046$	
10	В3	-	$35,0423 \pm 0,0091$	
10	B4	-	$45,5784\pm0,0226$	
10	B5	-	$46,4261 \pm 0,0366$	
10	В6	-	$34,6293 \pm 0,0167$	
10	C1	-	$38,5205 \pm 0,0118$	
10	C2	-	$26,391 \pm 0,0042$	
10	C3	-	$33,9119 \pm 0,0084$	
10	C4	-	$44,5736 \pm 0,0207$	
10	C5	-	$46,6242 \pm 0,0391$	
10	C6	-	$35,6484 \pm 0,0169$	
10	co	-	$1399,2166 \pm 52,9758$	
10	D1	-	$37,9597 \pm 0,0113$	
10	D2	-	$27,8406 \pm 0,005$	
10	D3	-	$37,5636 \pm 0,0107$	
10	D4	-	$48,6858 \pm 0,0339$	
10	D5	-	$50,2255 \pm 0,0734$	
10	D6	-	$41,393 \pm 0,0288$	
10	E1	-	$37,2701 \pm 0,0096$	
10	E2	-	$26,4302 \pm 0,0043$	
10	E3	-	$34,64 \pm 0,0084$	
10	E4	-	$45{,}1522 \pm 0{,}0214$	
10	E5	-	$45{,}3029 \pm 0{,}0303$	
10	E6	-	$37,0729 \pm 0,0216$	
10	F1	-	$36,4843 \pm 0,0095$	
10	F2	-	$28,2235 \pm 0,005$	
10	F3	-	$37,6951 \pm 0,0108$	
10	F4	-	$48,\!5471\pm0,\!0273$	
10	F5	-	$47{,}4292\pm0{,}0338$	
10	F6	-	$40,\!8203\pm0,\!025$	
25	A1	-	$26,391 \pm 0,0043$	
25	A2	-	$20,\!2291\pm0,\!0023$	
25	A3	-	$27,\!2599\pm0,\!0045$	
25	A4	-	$35{,}9449\pm0{,}0102$	
25	A5	-	$35{,}4924\pm0{,}0116$	
Fortsetzung auf der nächsten Seite				

G [TT]	G .	Kapazi	tät [pF]
Spannungen [V]	Segment	C005	C006
25	A6	-	$30,6234 \pm 0,0103$
25	B1	-	$25,908 \pm 0,0041$
25	B2	-	$19,0971 \pm 0,0021$
25	В3	-	$25,0334 \pm 0,0038$
25	B4	_	$33,1585 \pm 0,0083$
25	B5	_	$34,7481 \pm 0,0119$
25	В6	-	$27,5168 \pm 0,0079$
25	C1	_	$26,693 \pm 0,0043$
25	C2	_	$18,7685 \pm 0,002$
25	C3	_	$24,2573 \pm 0,0034$
25	C4	_	$32,2971 \pm 0,0078$
25	C5	_	$34,8102 \pm 0,0122$
25	C6	_	$27,7543 \pm 0,0075$
25	co	-	$1025,1055 \pm 31,0222$
25	D1	-	$26,3903 \pm 0,0044$
25	D2	-	$19,8331 \pm 0,0023$
25	D3	-	$26,9712 \pm 0,0044$
25	D4	-	$35,4847 \pm 0,0115$
25	D5	-	$37,6436 \pm 0,0161$
25	D6	-	$31,8586 \pm 0,0122$
25	E1	-	$25,8561 \pm 0,0039$
25	E2	-	$18,8424 \pm 0,0021$
25	E3	-	$24,7898 \pm 0,0036$
25	E4	-	$32,956 \pm 0,008$
25	E5	-	$33,801 \pm 0,0102$
25	E6	-	$28,7023 \pm 0,0081$
25	F1	-	$25,4125 \pm 0,0037$
25	F2	-	$20,2213 \pm 0,0023$
25	F3	-	$27,2273 \pm 0,0043$
25	F4	-	$35,6258 \pm 0,0102$
25	F5	-	$35,6654 \pm 0,0124$
25	F6	-	$31,8412 \pm 0,0105$
50	A1	-	$18,8011 \pm 0,0024$
50	A2	-	$14,9064 \pm 0,0015$
50	A3	-	$20,2547 \pm 0,0027$
50	A4	-	$27,0426 \pm 0,0055$
50	A5	-	$27,2823 \pm 0,0061$
50	A6	-	$24,4038 \pm 0,0055$
50	B1	-	$18,4048 \pm 0,0023$
50	B2	-	$14,0343 \pm 0,0014$
	Fortsetzu	ing auf der nächsten Se	1

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Cramman [V]	Commonst	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
50	В3	-	$18,4264 \pm 0,0023$	
50	B4	-	$24,7425 \pm 0,0046$	
50	B5	-	$26,\!6052\pm0,\!0063$	
50	B6	-	$22,0393 \pm 0,0047$	
50	C1	-	$18,9824 \pm 0,0024$	
50	C2	-	$13,8086 \pm 0,0013$	
50	C3	-	$17,8616 \pm 0,0021$	
50	C4	-	$24,0122 \pm 0,0043$	
50	C5	-	$26,5276 \pm 0,0062$	
50	C6	-	$21,9515 \pm 0,0046$	
50	co	-	$769,6039 \pm 19,3729$	
50	D1	-	$18{,}7807 \pm 0{,}0024$	
50	D2	-	$14{,}5582\pm0{,}0015$	
50	D3	-	$19,8991 \pm 0,0026$	
50	D4	-	$26,4618 \pm 0,0057$	
50	D5	-	$28,6596 \pm 0,0079$	
50	D6	-	$24,9748 \pm 0,0061$	
50	E1	-	$18,4201 \pm 0,0022$	
50	E2	-	$13,8837 \pm 0,0014$	
50	E3	-	$18,\!2839\pm0,\!0022$	
50	E4	-	$24,6139 \pm 0,0044$	
50	E5	-	$25{,}7625\pm0{,}0056$	
50	E6	-	$22,5798 \pm 0,0047$	
50	F1	-	$18,1037 \pm 0,0021$	
50	F2	-	$14,9239\pm0,0015$	
50	F3	-	$20,2336 \pm 0,0026$	
50	F4	-	$26,7979\pm0,0052$	
50	F5	-	$27,3639 \pm 0,0064$	
50	F6	-	$25,2151\pm0,0059$	
75	A1	-	$14,8563\pm0,0018$	
75	A2	-	$12,0907 \pm 0,0012$	
75	A3	-	$16{,}5176\pm0{,}0021$	
75	A4	-	$22,\!2545\pm0,\!0039$	
75	A5	-	$22,\!8034\pm0,\!0045$	
75	A6	-	$20,8537\pm0,0041$	
75	B1	-	$14,5179\pm0,0017$	
75	B2	-	$11,3714 \pm 0,0011$	
75	В3	-	$14,9442 \pm 0,0018$	
75	B4	-	$20,239 \pm 0,0033$	
75	B5	-	$22{,}1563 \pm 0{,}0046$	
Fortsetzung auf der nächsten Seite				

		Kapazi	tät [pF]
Spannungen [V]	Segment	C005	C006
75	В6	-	$18,8932 \pm 0,0036$
75	C1	_	$14,992 \pm 0,0018$
75	C2	_	$11,2134 \pm 0,0011$
75	C3	_	$14,4821 \pm 0,0017$
75	C4	_	$19,5891 \pm 0,0032$
75	C5	_	$22,008 \pm 0,0045$
75	C6	_	$18,6669 \pm 0,0035$
75	co	-	$ 632,3025 \pm 14,2265 $
75	D1	_	$14,8248 \pm 0,0018$
75	D2	-	$11,7764 \pm 0,0012$
75	D3	-	$16,1476 \pm 0,002$
75	D4	-	$21,6247 \pm 0,0041$
75	D5	-	$23,7432 \pm 0,0056$
75	D6	-	$21,1121 \pm 0,0046$
75	E1	-	$14,5822 \pm 0,0017$
75	E2	-	$11,2721 \pm 0,0012$
75	E3	-	$14,8483 \pm 0,0017$
75	E4	_	$20,1332 \pm 0,0032$
75	E5	_	$21,3803 \pm 0,0041$
75	E6	_	$19,1443 \pm 0,0036$
75	F1	_	14.3 ± 0.0016
75	F2	_	$12,1066 \pm 0,0013$
75	F3	_	$16,5137 \pm 0,0021$
75	F4	_	$22,0603 \pm 0,0039$
75	F5	_	$22,8196 \pm 0,0047$
75	F6	_	$21,4632 \pm 0,0045$
100	A1	$33,0561 \pm 0,0014$	$12,4652 \pm 0,0015$
100	A2	$22,9233 \pm 0,0008$	$10,3357 \pm 0,0011$
100	A3	$28,286 \pm 0,0012$	$14,2097 \pm 0,0018$
100	A4	$40,0165 \pm 0,0026$	$19,2619 \pm 0,0033$
100	A5	$39,5616 \pm 0,0031$	$19,971 \pm 0,0037$
100	A6	$33,4378 \pm 0,0026$	$18,5793 \pm 0,0036$
100	B1	$35,0365 \pm 0,0015$	$12,1765 \pm 0,0015$
100	B2	$23,7083 \pm 0,0009$	$9,7283 \pm 0,001$
100	В3	$29,8199 \pm 0,0013$	$12,7956 \pm 0,0016$
100	B4	$42,5933 \pm 0,0029$	$17,4239 \pm 0,0028$
100	В5	$42,1587\pm0,0037$	$19,3272 \pm 0,0038$
100	В6	$36,6157 \pm 0,0032$	$16,8547 \pm 0,0032$
100	C1	$35,5369 \pm 0,0016$	$12,5767 \pm 0,0015$
100	C2	$24,3109 \pm 0,0009$	$9,6097 \pm 0,001$
	Fortsetzu	ing auf der nächsten Se	eite

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Charaman [V]	Commonst	Kapazi	tät [pF]
Spannungen [V]	Segment	C005	C006
100	C3	$30,8592 \pm 0,0014$	$12,4009 \pm 0,0015$
100	C4	$42,3971 \pm 0,0029$	$16,8163 \pm 0,0027$
100	C5	$40,5363 \pm 0,0032$	$19,1407 \pm 0,0037$
100	C6	$32,5596 \pm 0,0023$	$16,5621 \pm 0,003$
100	co	$1205,6661 \pm 44,1995$	$546,5253 \pm 11,4032$
100	D1	$35,4617 \pm 0,0016$	$12,4307 \pm 0,0015$
100	D2	$23,2832 \pm 0,0009$	$10,055 \pm 0,0011$
100	D3	$27,1972 \pm 0,0011$	$13,826 \pm 0,0018$
100	D4	$37,3359 \pm 0,0022$	$18,5991 \pm 0,0034$
100	D5	$35,7998 \pm 0,0025$	$20,6255\pm0,0045$
100	D6	$28,5345 \pm 0,0019$	$18,6318 \pm 0,0038$
100	E1	$35,3002 \pm 0,0015$	$12,2528 \pm 0,0015$
100	E2	$23,8008 \pm 0,0009$	$9,6493 \pm 0,0011$
100	E3	$29,\!4302\pm0,\!0012$	$12,7341 \pm 0,0015$
100	E4	$41,0468 \pm 0,0026$	$17,323 \pm 0,0027$
100	E5	$40,\!4277\pm0,\!0034$	$18,6022 \pm 0,0034$
100	E6	$35,4204 \pm 0,003$	$16,9304 \pm 0,003$
100	F1	$36,4644 \pm 0,0016$	$11,9945 \pm 0,0014$
100	F2	$23,7857 \pm 0,0008$	$10{,}3562 \pm 0{,}0011$
100	F3	$28,8073 \pm 0,0011$	$14,1999 \pm 0,0018$
100	F4	$39,1058 \pm 0,0023$	$19,0934 \pm 0,0033$
100	F5	$38,8035 \pm 0,0028$	$19,943 \pm 0,0039$
100	F6	$32,2474 \pm 0,0024$	$19,0432 \pm 0,0039$
200	A1	$15,73 \pm 0,0009$	$7,7514 \pm 0,0011$
200	A2	$11,7426 \pm 0,0006$	$6,599 \pm 0,0008$
200	A3	$14,3159 \pm 0,0007$	$9,3631 \pm 0,0014$
200	A4	$19,9297\pm0,0014$	$12,8919 \pm 0,0024$
200	A5	$19{,}504 \pm 0{,}0015$	$13,8057 \pm 0,0027$
200	A6	$16,\!2937\pm0,\!0012$	$13,434 \pm 0,0026$
200	B1	$16,7378 \pm 0,001$	$7,559 \pm 0,0011$
200	B2	$12,1153 \pm 0,0006$	$6,2652 \pm 0,0008$
200	В3	$15,0325 \pm 0,0008$	$8,3677 \pm 0,0012$
200	B4	$21,174 \pm 0,0015$	$11,4703 \pm 0,002$
200	B5	$20,849 \pm 0,0016$	$13,2092 \pm 0,0027$
200	B6	$17,7768 \pm 0,0014$	$12,1819 \pm 0,0024$
200	C1	$16,8633 \pm 0,001$	$7,8151 \pm 0,0011$
200	C2	$12,3958 \pm 0,0006$	$6,2348 \pm 0,0008$
200	C3	$15,\!4895\pm0,\!0009$	$8,1374 \pm 0,0011$
200	C4	$21,0757 \pm 0,0016$	$11,0097 \pm 0,0019$
200	C5	$19,7902 \pm 0,0015$	$12,961 \pm 0,0026$
Fortsetzung auf der nächsten Seite			

C [M]	G ,	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
200	C6	$15,7185 \pm 0,0011$	$11,7839 \pm 0,0022$	
200	co	$594,9086 \pm 14,5341$	$365,2381 \pm 6,4173$	
200	D1	$16,9711 \pm 0,001$	$7,7292 \pm 0,0011$	
200	D2	$12,1506 \pm 0,0006$	$6,4185 \pm 0,0009$	
200	D3	$13,9622\pm0,0008$	$8,9931 \pm 0,0013$	
200	D4	$18,5139 \pm 0,0013$	$12,2206 \pm 0,0024$	
200	D5	$17,4389 \pm 0,0013$	$13,9254 \pm 0,0032$	
200	D6	$13,7921\pm0,0009$	$13,102 \pm 0,0028$	
200	E1	$16,8331 \pm 0,001$	$7,6912 \pm 0,0011$	
200	E2	$12,193 \pm 0,0006$	$6,2446 \pm 0,0009$	
200	E3	$14,8376 \pm 0,0008$	$8,384 \pm 0,0012$	
200	E4	$20{,}337 \pm 0{,}0015$	$11,4176 \pm 0,002$	
200	E5	$20,0103\pm0,0016$	$12,6347 \pm 0,0025$	
200	E6	$17,2468 \pm 0,0014$	$11,9983 \pm 0,0023$	
200	F1	$17,3662 \pm 0,001$	$7,4504 \pm 0,001$	
200	F2	$12,1978 \pm 0,0006$	$6,5849 \pm 0,0009$	
200	F3	$14,\!5781\pm0,\!0008$	$9,3829 \pm 0,0014$	
200	F4	$19{,}3594 \pm 0{,}0013$	$12,8074 \pm 0,0024$	
200	F5	$19,0602\pm0,0014$	$13,7492 \pm 0,0028$	
200	F6	$15{,}5263\pm0{,}0012$	$13,6641 \pm 0,0028$	
300	A1	-	$5,6659 \pm 0,001$	
300	A2	-	$4,7851 \pm 0,0007$	
300	A3	-	$7,0364 \pm 0,0012$	
300	A4	-	$9,7092 \pm 0,002$	
300	A5	-	$10,6054 \pm 0,0024$	
300	A6	-	$10,6111 \pm 0,0023$	
300	B1	-	$5,5174 \pm 0,001$	
300	B2	-	$4,6121 \pm 0,0007$	
300	В3	-	$6,3122 \pm 0,0011$	
300	B4	-	$8,5326 \pm 0,0017$	
300	В5	-	$10,0397 \pm 0,0023$	
300	В6	-	$9,5531 \pm 0,0021$	
300	C1	-	$5,7111 \pm 0,001$	
300	C2	-	$4,6278 \pm 0,0007$	
300	C3	-	$6,1762 \pm 0,001$	
300	C4	-	$8,1808 \pm 0,0016$	
300	C5	-	$9,775 \pm 0,0022$	
300	C6	-	$9,1729 \pm 0,0019$	
300	co	-	$275,683 \pm 4,4405$	
300	D1	-	$5,6482 \pm 0,001$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Cramman [V]	Commonant	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
300	D2	-	$4,6816 \pm 0,0008$	
300	D3	_	$6,7086 \pm 0,0012$	
300	D4	_	$9,0782 \pm 0,002$	
300	D5	_	$10,5011 \pm 0,0027$	
300	D6	-	$10,1373 \pm 0,0023$	
300	E1	-	$5,6652 \pm 0,001$	
300	E2	_	$4,6167 \pm 0,0008$	
300	E3	-	$6,3778 \pm 0,0011$	
300	E4	-	$8,5231 \pm 0,0017$	
300	E5	-	$9,5692 \pm 0,0021$	
300	E6	-	$9,3425 \pm 0,002$	
300	F1	_	$5,4378 \pm 0,0009$	
300	F2	-	$4,7404 \pm 0,0008$	
300	F3	_	$7,0461 \pm 0,0012$	
300	F4	_	$9,6627 \pm 0,0021$	
300	F5	_	$10,5596 \pm 0,0025$	
300	F6	_	$10,7631 \pm 0,0025$	
400	A1	-	$4,45 \pm 0,0009$	
400	A2	-	$3,7078 \pm 0,0007$	
400	A3	-	$5,6405 \pm 0,0012$	
400	A4	_	$7,7048 \pm 0,0019$	
400	A5	_	$8,4958 \pm 0,0022$	
400	A6	-	$8,5911 \pm 0,0021$	
400	B1	-	$4,3266 \pm 0,0009$	
400	B2	_	$3,6224 \pm 0,0007$	
400	В3	-	$5{,}133 \pm 0{,}0011$	
400	B4	-	$6,7552 \pm 0,0016$	
400	B5	-	$7,9555 \pm 0,0021$	
400	B6	-	$7,652 \pm 0,0019$	
400	C1	-	$4,4769 \pm 0,0009$	
400	C2	-	$3,6599 \pm 0,0007$	
400	C3	_	$5,054 \pm 0,001$	
400	C4	_	$6,5029 \pm 0,0015$	
400	C5	-	$7,7105 \pm 0,002$	
400	C6	-	$7,3117 \pm 0,0017$	
400	co	-	$219,4173 \pm 3,3624$	
400	D1	-	$4,4338 \pm 0,001$	
400	D2	-	$3,6483 \pm 0,0007$	
400	D3	-	$5,3775 \pm 0,0011$	
400	D4	-	$7,1588 \pm 0,0019$	
Fortsetzung auf der nächsten Seite				

G [77]	G .	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
400	D5	-	$8,2903 \pm 0,0024$	
400	D6	-	$8,1151 \pm 0,0021$	
400	E1	-	$4,4776 \pm 0,0009$	
400	E2	-	$3,6394 \pm 0,0008$	
400	E3	_	$5,2133 \pm 0,0011$	
400	E4	-	$6,7726 \pm 0,0016$	
400	E5	-	$7,5716 \pm 0,0019$	
400	E6	-	$7,5154 \pm 0,0018$	
400	F1	-	$4,2666 \pm 0,0009$	
400	F2	-	$3,6449 \pm 0,0007$	
400	F3	-	$5,631 \pm 0,0012$	
400	F4	_	$7,666 \pm 0,0019$	
400	F5	-	$8,4645 \pm 0,0023$	
400	F6	_	$8,7803 \pm 0,0022$	
500	A1	$5,9483 \pm 0,0007$	$3,632 \pm 0,001$	
500	A2	$4,7407 \pm 0,0005$	$2,9927 \pm 0,0007$	
500	A3	$6,2311 \pm 0,0006$	$4,7122 \pm 0,0013$	
500	A4	$7,9407 \pm 0,0009$	$6,3383 \pm 0,0026$	
500	A5	$7,3706 \pm 0,0009$	$6,9615 \pm 0,0031$	
500	A6	$6,3005 \pm 0,0007$	$7,0283 \pm 0,0022$	
500	B1	$6,4016 \pm 0,0008$	$3,5335 \pm 0,001$	
500	B2	$4,8791 \pm 0,0005$	$2,9542 \pm 0,0007$	
500	В3	$6,4956 \pm 0,0007$	$4,3527 \pm 0,0013$	
500	B4	$8,3426 \pm 0,001$	$5,5954 \pm 0,0021$	
500	B5	$7,8079 \pm 0,0009$	$6,468 \pm 0,0037$	
500	B6	$6,7138 \pm 0,0007$	$6,1884 \pm 0,0021$	
500	C1	$6,3468 \pm 0,0008$	$3,6572 \pm 0,0011$	
500	C2	$5,0237 \pm 0,0005$	$3,0092 \pm 0,0008$	
500	C3	$6,6159 \pm 0,0007$	$4,3216 \pm 0,0012$	
500	C4	$8,3614 \pm 0,001$	$5,4458 \pm 0,0021$	
500	C5	$7,5563 \pm 0,0009$	$6,2463 \pm 0,0031$	
500	C6	$6,1467 \pm 0,0007$	$5,8744 \pm 0,0019$	
500	co	$235,0041 \pm 4,4893$	$180,1618 \pm 2,6867$	
500	D1	$6,4695 \pm 0,0008$	$3,6132 \pm 0,0012$	
500	D2	$5,1194 \pm 0,0006$	$2,9514 \pm 0,0008$	
500	D3	$6,3254 \pm 0,0007$	$4,517 \pm 0,0013$	
500	D4	$7,6094 \pm 0,0009$	$5,9031 \pm 0,004$	
500	D5	$6,6622 \pm 0,0008$	$6,7317 \pm 0,0061$	
500	D6	$5,3824 \pm 0,0006$	$6,587 \pm 0,0026$	
500	E1	$6,4366 \pm 0,0007$	$3,6738 \pm 0,0012$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channungan [V]	Comment	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
500	E2	$4,9468 \pm 0,0005$	$2,976 \pm 0,0009$	
500	E3	$6,4856 \pm 0,0007$	$4,4382 \pm 0,0012$	
500	E4	$8,0097 \pm 0,0009$	$5,6271 \pm 0,0019$	
500	E5	$7,367 \pm 0,0009$	$6,1533 \pm 0,0027$	
500	E6	$6,2962 \pm 0,0007$	$6,1288 \pm 0,0019$	
500	F1	$6,6188 \pm 0,0008$	$3,4809 \pm 0,0009$	
500	F2	$4,9883 \pm 0,0005$	$2,9264 \pm 0,0007$	
500	F3	$6,418 \pm 0,0007$	$4,\!6889\pm0,\!0013$	
500	F4	$7,7793\pm0,0009$	$6,2925 \pm 0,0027$	
500	F5	$7,1157 \pm 0,0009$	$6,9322 \pm 0,0038$	
500	F6	$5,7505 \pm 0,0007$	$7,\!2288\pm0,\!0025$	
700	A1	$4,1486 \pm 0,0006$	$2,6302 \pm 0,001$	
700	A2	$3,3277 \pm 0,0005$	$2,\!1082 \pm 0,\!0007$	
700	A3	$4,6747 \pm 0,0006$	$3,561 \pm 0,0013$	
700	A4	$5,854 \pm 0,0008$	$4,697\pm0,0024$	
700	A5	$5,3197 \pm 0,0008$	$4,927 \pm 0,0025$	
700	A6	$4,\!5967\pm0,\!0007$	$4,8813\pm0,0017$	
700	B1	$4,4787\pm0,0007$	$2,5575 \pm 0,001$	
700	B2	$3,4097 \pm 0,0005$	$2,1146 \pm 0,0007$	
700	В3	$4,8559\pm0,0007$	$3,3704 \pm 0,0013$	
700	B4	$6,1256 \pm 0,0009$	$4,\!2571\pm0,\!002$	
700	B5	$5,6031 \pm 0,0008$	$4,5748\pm0,003$	
700	B6	$4,\!8548\pm0,\!0007$	$4,\!2491\pm0,\!0017$	
700	C1	$4,4186 \pm 0,0007$	$2,6419 \pm 0,001$	
700	C2	$3,5299 \pm 0,0005$	$2,1637 \pm 0,0007$	
700	C3	$4,9455\pm0,0007$	$3,3701 \pm 0,0012$	
700	C4	$6,162 \pm 0,001$	$4,1817 \pm 0,002$	
700	C5	$5,4925 \pm 0,0009$	$4,4423 \pm 0,0026$	
700	C6	$4,5083 \pm 0,0007$	$4,0006 \pm 0,0015$	
700	co	$170,4234 \pm 3,2617$	$130,4222 \pm 1,9263$	
700	D1	$4,\!5258\pm0,\!0007$	$2,6028 \pm 0,0011$	
700	D2	$3,6382 \pm 0,0005$	$2,0908 \pm 0,0007$	
700	D3	$4,8113 \pm 0,0007$	$3,4451 \pm 0,0013$	
700	D4	$5,6974 \pm 0,0009$	$4,44 \pm 0,0038$	
700	D5	$4,8841 \pm 0,0008$	$4,801 \pm 0,0049$	
700	D6	$3,955 \pm 0,0006$	$4,566 \pm 0,002$	
700	E1	$4,5075\pm0,0007$	$2,\!6728\pm0,\!0012$	
700	E2	$3,4825 \pm 0,0005$	$2,1241 \pm 0,0008$	
700	E3	$4,\!8763\pm0,\!0007$	$3,4476 \pm 0,0013$	
700	E4	$5,9059 \pm 0,0009$	$4,\!2814\pm0,\!0019$	
Fortsetzung auf der nächsten Seite				

G [77]	G .	Kapazi	tät [pF]
Spannungen [V]	Segment	C005	C006
700	E5	$5,2654 \pm 0,0009$	$4,3708 \pm 0,0022$
700	E6	$4,4945 \pm 0,0007$	$4,2136 \pm 0,0015$
700	F1	$4,629 \pm 0,0007$	$2,514 \pm 0,0009$
700	F2	$3,519 \pm 0,0005$	$2,0439 \pm 0,0007$
700	F3	$4,8468 \pm 0,0007$	$3,5227 \pm 0,0013$
700	F4	$5,7849 \pm 0,0009$	$4,6311 \pm 0,0025$
700	F5	$5,1414 \pm 0,0008$	$4,8989 \pm 0,0031$
700	F6	$4,1522 \pm 0,0006$	$5,0271 \pm 0,002$
1000	A1	$2,763 \pm 0,0006$	$1,8959 \pm 0,001$
1000	A2	$2,1544 \pm 0,0004$	$1,3887 \pm 0,0006$
1000	A3	$3,284 \pm 0,0006$	$2,5296 \pm 0,0013$
1000	A4	$4,1437 \pm 0,0008$	$3,3802 \pm 0,0024$
1000	A5	$3,7081 \pm 0,0008$	$3,3249 \pm 0,0023$
1000	A6	$3,2293 \pm 0,0007$	$3,1665 \pm 0,0015$
1000	B1	$2,9925 \pm 0,0007$	$1,8564 \pm 0,001$
1000	B2	$2,2039 \pm 0,0005$	$1,4191 \pm 0,0007$
1000	В3	$3,4091 \pm 0,0007$	$2,4491 \pm 0,0013$
1000	B4	$4,3235 \pm 0,0009$	$3,1468 \pm 0,002$
1000	В5	$3,8842 \pm 0,0008$	$3,1326 \pm 0,0027$
1000	В6	$3,3796 \pm 0,0007$	$2,7484 \pm 0,0014$
1000	C1	$2,9215 \pm 0,0007$	$1,896 \pm 0,001$
1000	C2	$2,2781 \pm 0,0005$	$1,4375 \pm 0,0007$
1000	C3	$3,4714 \pm 0,0007$	$2,458 \pm 0,0013$
1000	C4	$4,3588 \pm 0,001$	$3,1179 \pm 0,0021$
1000	C5	$3,833 \pm 0,0009$	$3,0802 \pm 0,0024$
1000	C6	$3,1647 \pm 0,0006$	$2,6132 \pm 0,0013$
1000	co	$117,7959 \pm 2,3987$	$90,6419 \pm 1,407$
1000	D1	$3,0234 \pm 0,0007$	$1,86 \pm 0,0011$
1000	D2	$2,3867 \pm 0,0005$	$1,3748 \pm 0,0007$
1000	D3	$3,4384 \pm 0,0007$	$2,4684 \pm 0,0013$
1000	D4	$4,0937 \pm 0,0009$	$3,2456 \pm 0,0037$
1000	D5	$3,426 \pm 0,0008$	$3,3189 \pm 0,0045$
1000	D6	$2,7851 \pm 0,0006$	$3,0136 \pm 0,0017$
1000	E1	$3,0251 \pm 0,0007$	$1,9416 \pm 0,0012$
1000	E2	$2,2502 \pm 0,0004$	$1,4185 \pm 0,0007$
1000	E3	$3,4673 \pm 0,0007$	$2,5065 \pm 0,0013$
1000	E4	$4,2126 \pm 0,0009$	$3,1706 \pm 0,0019$
1000	E5	$3,6448 \pm 0,0009$	$3,0168 \pm 0,0021$
1000	E6	$3,1049 \pm 0,0007$	$2,7525\pm0,0013$
1000	F1	$3,0982 \pm 0,0007$	$1,8078 \pm 0,0009$
	Fortsetzu	ing auf der nächsten Se	ite

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Charaman [V]	Commonat	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
1000	F2	$2,2882 \pm 0,0004$	$1,3355 \pm 0,0006$	
1000	F3	$3,4455 \pm 0,0007$	$2,4841 \pm 0,0012$	
1000	F4	$4,1392 \pm 0,0009$	$3,3221 \pm 0,0024$	
1000	F5	$3,5871 \pm 0,0008$	$3,3096 \pm 0,0027$	
1000	F6	$2,8766 \pm 0,0006$	$3,2539 \pm 0,0017$	
1250	A1	$2,1385 \pm 0,0006$	$1,6643 \pm 0,0011$	
1250	A2	$1,5686 \pm 0,0004$	$1,0747 \pm 0,0006$	
1250	A3	$2,4972 \pm 0,0006$	$1,96 \pm 0,0013$	
1250	A4	$3,2105 \pm 0,0008$	$2,6568 \pm 0,0023$	
1250	A5	$2,8553 \pm 0,0008$	$2,5601 \pm 0,0021$	
1250	A6	$2,531 \pm 0,0007$	$2,4399 \pm 0,0014$	
1250	B1	$2,3189 \pm 0,0007$	$1,6424 \pm 0,0011$	
1250	B2	$1,5995 \pm 0,0004$	$1,1192 \pm 0,0007$	
1250	В3	$2,5823 \pm 0,0007$	$1,9308 \pm 0,0013$	
1250	B4	$3,3341 \pm 0,0009$	$2,5198 \pm 0,002$	
1250	B5	$2,9715 \pm 0,0008$	$2,4406 \pm 0,0026$	
1250	B6	$2,613 \pm 0,0007$	$2,1392 \pm 0,0014$	
1250	C1	$2,2467 \pm 0,0007$	$1,6716 \pm 0,0012$	
1250	C2	$1,6527 \pm 0,0004$	$1,123 \pm 0,0007$	
1250	C3	$2,6266 \pm 0,0007$	$1,9368 \pm 0,0012$	
1250	C4	$3,3666 \pm 0,001$	$2,4986 \pm 0,002$	
1250	C5	$2,9573 \pm 0,0009$	$2,4222 \pm 0,0023$	
1250	C6	$2,4919 \pm 0,0007$	$2,0542 \pm 0,0012$	
1250	co	$90,3586 \pm 2,0032$	$71,9898 \pm 1,198$	
1250	D1	$2,3475 \pm 0,0007$	$1,6253 \pm 0,0012$	
1250	D2	$1,7509 \pm 0,0005$	$1,0634 \pm 0,0007$	
1250	D3	$2,6401 \pm 0,0007$	$1,9165 \pm 0,0012$	
1250	D4	$3,1865 \pm 0,0009$	$2,5746 \pm 0,0037$	
1250	D5	$2,6675 \pm 0,0008$	$2,5863 \pm 0,0043$	
1250	D6	$2,\!2067 \pm 0,\!0006$	$2,3509 \pm 0,0016$	
1250	E1	$2,3495 \pm 0,0007$	$1,7142 \pm 0,0013$	
1250	E2	$1,6386 \pm 0,0004$	$1,1117 \pm 0,0008$	
1250	E3	$2,6439 \pm 0,0007$	$1,9734 \pm 0,0013$	
1250	E4	$3,2685 \pm 0,0009$	$2,5325 \pm 0,0019$	
1250	E5	$2,8018 \pm 0,0008$	$2,3484 \pm 0,002$	
1250	E6	$2,4031 \pm 0,0007$	$2,1389 \pm 0,0013$	
1250	F1	$2,4043 \pm 0,0007$	$1,5859 \pm 0,001$	
1250	F2	$1,6704 \pm 0,0004$	$1,0331 \pm 0,0006$	
1250	F3	$2,6273 \pm 0,0007$	$1,9294 \pm 0,0012$	
1250	F4	$3,2045 \pm 0,0009$	$2,6124 \pm 0,0024$	
Fortsetzung auf der nächsten Seite				

G [57]	G ,	Kapazi	tät [pF]				
Spannungen [V]	Segment	C005	C006				
1250	F5	$2,749 \pm 0,0008$	$2,5357 \pm 0,0026$				
1250	F6	$2,2364 \pm 0,0006$	$2,5032 \pm 0,0015$				
1500	A1	$1,78 \pm 0,0006$	$1,6113 \pm 0,0013$				
1500	A2	$1,1933 \pm 0,0004$	0.9171 ± 0.0007				
1500	A3	$1,9174 \pm 0,0006$	$1,5528 \pm 0,0012$				
1500	A4	$2,5018 \pm 0,0008$	$2,0472\pm0,0021$				
1500	A5	$2,267 \pm 0,0008$	$1,9942 \pm 0,002$				
1500	A6	$2,1129 \pm 0,0007$	$2,0381 \pm 0,0014$				
1500	B1	$1,932 \pm 0,0007$	$1,6057 \pm 0,0013$				
1500	B2	$1,2123 \pm 0,0004$	$0,9705 \pm 0,0007$				
1500	В3	$1,9773 \pm 0,0007$	$1,5583 \pm 0,0013$				
1500	B4	$2,591 \pm 0,0009$	$1,9732 \pm 0,0019$				
1500	В5	$2,3374 \pm 0,0008$	$1,9385 \pm 0,0024$				
1500	В6	$2,1542 \pm 0,0007$	$1,8102 \pm 0,0014$				
1500	C1	$1,8633 \pm 0,0007$	$1,628 \pm 0,0013$				
1500	C2	$1,2533 \pm 0,0004$	$0,9699 \pm 0,0007$				
1500	C3	$2,0185 \pm 0,0007$	$1,5658 \pm 0,0012$				
1500	C4	$2,6178 \pm 0,001$	$1,9738 \pm 0,002$				
1500	C5	$2,3446 \pm 0,0009$	$1,9296 \pm 0,0022$				
1500	C6	$2,\!0797 \pm 0,\!0007$	$1,748 \pm 0,0012$				
1500	co	$71,8598 \pm 1,7608$	$59,7984 \pm 1,0765$				
1500	D1	$1,9581 \pm 0,0007$	$1,5712 \pm 0,0014$				
1500	D2	$1,3418 \pm 0,0005$	$0,9033 \pm 0,0007$				
1500	D3	$2,0387 \pm 0,0007$	$1,53 \pm 0,0012$				
1500	D4	$2,5001 \pm 0,0009$	$2,0143 \pm 0,0034$				
1500	D5	$2,1238 \pm 0,0008$	$2,0559 \pm 0,0041$				
1500	D6	$1,8482 \pm 0,0006$	$1,9914 \pm 0,0017$				
1500	E1	$1,9744 \pm 0,0007$	$1,6682 \pm 0,0015$				
1500	E2	$1,\!2552\pm0,\!0004$	$0,9547 \pm 0,0008$				
1500	E3	$2,0399 \pm 0,0007$	$1,5866 \pm 0,0012$				
1500	E4	$2,5522 \pm 0,0009$	$1,99 \pm 0,0018$				
1500	E5	$2,\!2127\pm0,\!0008$	$1,8556 \pm 0,0019$				
1500	E6	$1,9902 \pm 0,0007$	$1,7906 \pm 0,0013$				
1500	F1	$2,0137 \pm 0,0007$	$1,\!5362\pm0,\!0012$				
1500	F2	$1,\!2751\pm0,\!0004$	0.8831 ± 0.0007				
1500	F3	$2,\!0257\pm0,\!0007$	$1,5337 \pm 0,0011$				
1500	F4	$2,5093 \pm 0,0009$	$2,\!0206\pm0,\!0022$				
1500	F5	$2,1812 \pm 0,0008$	$1,9958\pm0,0025$				
1500	F6	$1,\!8657\pm0,\!0006$	$2,\!0847\pm0,\!0015$				
1750	A1	$1,6072 \pm 0,0007$	$1,6339 \pm 0,0014$				
	Fortsetzu	ing auf der nächsten Se	Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channan [V]	Commonat	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
1750	A2	0.9894 ± 0.0004	0.8898 ± 0.0007	
1750	A3	$1,5614 \pm 0,0006$	$1,4248 \pm 0,0012$	
1750	A4	$2,0388 \pm 0,0008$	$1,7867 \pm 0,002$	
1750	A5	$1,9006 \pm 0,0008$	$1,7771 \pm 0,0019$	
1750	A6	$1,8876 \pm 0,0008$	$1,9389 \pm 0,0014$	
1750	B1	$1,7496 \pm 0,0008$	$1,6275 \pm 0,0014$	
1750	B2	$1,0064 \pm 0,0004$	$0,951 \pm 0,0008$	
1750	В3	$1,6032 \pm 0,0006$	$1,4622 \pm 0,0013$	
1750	B4	$2,0975 \pm 0,0008$	$1,7716 \pm 0,0018$	
1750	B5	$1,9405\pm0,0007$	$1,775\pm0,0024$	
1750	В6	$1,907 \pm 0,0007$	$1,\!7519\pm0,\!0014$	
1750	C1	$1,6758 \pm 0,0007$	$1,6468 \pm 0,0014$	
1750	C2	$1,0356 \pm 0,0004$	$0,9422 \pm 0,0008$	
1750	C3	$1,6368 \pm 0,0006$	$1,\!4472\pm0,\!0012$	
1750	C4	$2,1275 \pm 0,0009$	$1,7608 \pm 0,0019$	
1750	C5	$1,9741 \pm 0,0009$	$1,\!7613\pm0,\!0022$	
1750	C6	$1,8651 \pm 0,0007$	$1,685 \pm 0,0013$	
1750	co	$60,9113 \pm 1,6277$	$55,7132 \pm 1,0389$	
1750	D1	$1,7702 \pm 0,0008$	$1,\!5811\pm0,\!0015$	
1750	D2	$1,1166 \pm 0,0005$	$0,862 \pm 0,0008$	
1750	D3	$1,\!6677\pm0,\!0007$	$1,3799 \pm 0,0012$	
1750	D4	$2,0435 \pm 0,0009$	$1,7496 \pm 0,0033$	
1750	D5	$1,79 \pm 0,0008$	$1,843 \pm 0,0041$	
1750	D6	$1,661 \pm 0,0006$	$1,9144 \pm 0,0017$	
1750	E1	$1,7969 \pm 0,0008$	$1,6799 \pm 0,0016$	
1750	E2	$1,0465 \pm 0,0004$	$0,9159 \pm 0,0009$	
1750	E3	$1,6598 \pm 0,0007$	$1,4284 \pm 0,0012$	
1750	E4	$2,0787\pm0,0009$	$1,7106 \pm 0,0016$	
1750	E5	$1,8438 \pm 0,0008$	$1,6542 \pm 0,0018$	
1750	E6	$1,7662 \pm 0,0007$	$1,7129 \pm 0,0013$	
1750	F1	$1,8294 \pm 0,0008$	$1,5503 \pm 0,0013$	
1750	F2	$1,0599 \pm 0,0004$	0.8504 ± 0.0008	
1750	F3	$1,6487 \pm 0,0006$	$1,3789 \pm 0,0011$	
1750	F4	$2,0417\pm0,0009$	$1,7396 \pm 0,0021$	
1750	F5	$1,\!8253\pm0,\!0008$	$1,7451\pm0,0023$	
1750	F6	$1,6613 \pm 0,0007$	$1,9835 \pm 0,0016$	
2000	A1	$1,4932 \pm 0,0007$	$1,6293 \pm 0,0014$	
2000	A2	0.8455 ± 0.0004	0.8878 ± 0.0007	
2000	A3	$1,\!2711\pm0,\!0005$	$1,4158 \pm 0,0012$	
2000	A4	$1,6878 \pm 0,0007$	$1,7784 \pm 0,002$	
	Fortsetzung auf der nächsten Seite			

G [17]	Segment	Kapazität [pF]	
Spannungen [V]		C005	C006
2000	A5	$1,7204 \pm 0,0008$	$1,773 \pm 0,0019$
2000	A6	$1,8054 \pm 0,0008$	$1,9335 \pm 0,0014$
2000	B1	$1,6251 \pm 0,0008$	$1,6227 \pm 0,0015$
2000	B2	0.858 ± 0.0004	0.9488 ± 0.0008
2000	В3	$1,2985 \pm 0,0006$	$1,4604 \pm 0,0013$
2000	B4	$1,7235 \pm 0,0008$	$1,7676 \pm 0,0018$
2000	B5	$1,7528 \pm 0,0008$	$1,7678 \pm 0,0024$
2000	В6	$1,8203 \pm 0,0008$	$1,7514 \pm 0,0014$
2000	C1	$1,555 \pm 0,0008$	$1,6464 \pm 0,0015$
2000	C2	0.8779 ± 0.0004	0.9458 ± 0.0008
2000	C3	$1,3245 \pm 0,0006$	$1,4524 \pm 0,0012$
2000	C4	$1,7767 \pm 0,0009$	$1,7578 \pm 0,0019$
2000	C5	$1,7992 \pm 0,0009$	$1,7634 \pm 0,0022$
2000	C6	$1,7867\pm0,0008$	$1,6823 \pm 0,0013$
2000	co	$53,9162 \pm 1,5472$	$55,5833 \pm 1,0377$
2000	D1	$1,6453 \pm 0,0008$	$1,5774 \pm 0,0015$
2000	D2	0.9556 ± 0.0004	0.8634 ± 0.0008
2000	D3	$1,356 \pm 0,0006$	$1,3744 \pm 0,0012$
2000	D4	$1,7092 \pm 0,0008$	$1,7382 \pm 0,0031$
2000	D5	$1,6343 \pm 0,0008$	$1,8372 \pm 0,004$
2000	D6	$1,5903 \pm 0,0007$	$1,9077 \pm 0,0017$
2000	E1	$1,6803 \pm 0,0008$	$1,6759 \pm 0,0016$
2000	E2	$0,9056 \pm 0,0004$	0.9138 ± 0.0009
2000	E3	$1,3623 \pm 0,0006$	$1,4176 \pm 0,0012$
2000	E4	$1,7369 \pm 0,0008$	$1,7036 \pm 0,0016$
2000	E5	$1,6786 \pm 0,0008$	$1,6463 \pm 0,0018$
2000	E6	$1,6921 \pm 0,0008$	$1,7084 \pm 0,0013$
2000	F1	$1,\!7047\pm0,\!0008$	$1,5481 \pm 0,0013$
2000	F2	$0,9104 \pm 0,0004$	0.843 ± 0.0007
2000	F3	$1,3488 \pm 0,0006$	$1,3787 \pm 0,0011$
2000	F4	$1{,}7152\pm0{,}0008$	$1,7276 \pm 0,002$
2000	F5	$1,6757\pm0,0008$	$1,7584 \pm 0,0024$
2000	F6	$1{,}5931\pm0{,}0007$	$1,9791 \pm 0,0016$
2250	A1	$1,4906 \pm 0,0007$	$1,6244 \pm 0,0014$
2250	A2	0.841 ± 0.0004	0.885 ± 0.0007
2250	A3	$1,\!2588\pm0,\!0005$	$1,4133 \pm 0,0012$
2250	A4	$1,\!6807\pm0,\!0007$	$1,7739 \pm 0,002$
2250	A5	$1{,}7185\pm0{,}0008$	$1,7697 \pm 0,002$
2250	A6	$1,8068 \pm 0,0008$	$1,9319 \pm 0,0014$
2250	B1	$1,625 \pm 0,0008$	$1,6238 \pm 0,0014$
Fortsetzung auf der nächsten Seite			

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Cranning on [V]	Commonat	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
2250	B2	0.8545 ± 0.0004	0.9476 ± 0.0008	
2250	В3	$1,2914 \pm 0,0006$	$1,455 \pm 0,0013$	
2250	B4	$1,7162 \pm 0,0008$	$1,767 \pm 0,0018$	
2250	B5	$1,7508 \pm 0,0008$	$1,7654 \pm 0,0024$	
2250	В6	$1,8214 \pm 0,0008$	$1,7477 \pm 0,0014$	
2250	C1	$1,5527 \pm 0,0008$	$1,643 \pm 0,0015$	
2250	C2	0.8747 ± 0.0004	0.9445 ± 0.0008	
2250	C3	$1,3171 \pm 0,0006$	$1,4447 \pm 0,0012$	
2250	C4	$1,7701 \pm 0,0009$	$1,7592 \pm 0,0019$	
2250	C5	$1,798 \pm 0,0009$	$1,76 \pm 0,0022$	
2250	C6	$1,7869 \pm 0,0008$	$1,6811 \pm 0,0013$	
2250	co	$53,7657 \pm 1,5455$	$55,5025 \pm 1,037$	
2250	D1	$1,6412 \pm 0,0008$	$1,577 \pm 0,0015$	
2250	D2	0.9514 ± 0.0004	0.8622 ± 0.0008	
2250	D3	$1,3512 \pm 0,0006$	$1,3719 \pm 0,0012$	
2250	D4	$1,7029 \pm 0,0008$	$1,7362 \pm 0,0032$	
2250	D5	$1,6369 \pm 0,0008$	$1,8361 \pm 0,0041$	
2250	D6	$1,5932 \pm 0,0007$	$1,9042 \pm 0,0017$	
2250	E1	$1,6771 \pm 0,0008$	$1,674 \pm 0,0016$	
2250	E2	0.8997 ± 0.0004	0.9101 ± 0.0009	
2250	E3	$1,35 \pm 0,0006$	$1,4195 \pm 0,0012$	
2250	E4	$1,7267 \pm 0,0008$	$1,702 \pm 0,0016$	
2250	E5	$1,675 \pm 0,0008$	$1,6536 \pm 0,0018$	
2250	E6	$1,6905 \pm 0,0008$	$1,7152 \pm 0,0013$	
2250	F1	$1,702 \pm 0,0008$	$1,5483 \pm 0,0013$	
2250	F2	$0,9072 \pm 0,0004$	0.8491 ± 0.0008	
2250	F3	$1,3424 \pm 0,0006$	$1,3736 \pm 0,0011$	
2250	F4	$1,7059 \pm 0,0008$	$1,7185 \pm 0,0021$	
2250	F5	$1,666 \pm 0,0008$	$1,7417 \pm 0,0023$	
2250	F6	$1,5916 \pm 0,0007$	$1,9719 \pm 0,0016$	
2500	A1	$1,4795 \pm 0,0007$	$1,6226 \pm 0,0014$	
2500	A2	0.8348 ± 0.0004	0.8842 ± 0.0007	
2500	A3	$1,2527 \pm 0,0005$	$1,4114 \pm 0,0012$	
2500	A4	$1,668 \pm 0,0007$	$1,771 \pm 0,002$	
2500	A5	$1,7072 \pm 0,0008$	$1,7663 \pm 0,002$	
2500	A6	$1,7948 \pm 0,0008$	$1,9289 \pm 0,0014$	
2500	B1	$1,611 \pm 0,0008$	$1,6259 \pm 0,0015$	
2500	B2	0.8491 ± 0.0004	0.9471 ± 0.0008	
2500	В3	$1,2787 \pm 0,0006$	$1,4526 \pm 0,0013$	
2500	B4	$1,7017 \pm 0,0008$	$1,7635 \pm 0,0018$	
Fortsetzung auf der nächsten Seite				

G [57]	G ,	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
2500	B5	$1,7306 \pm 0,0008$	$1,7626 \pm 0,0024$	
2500	В6	$1,8077 \pm 0,0008$	$1,7435 \pm 0,0014$	
2500	C1	$1,5392 \pm 0,0008$	$1,6433 \pm 0,0015$	
2500	C2	0.8663 ± 0.0004	0.9417 ± 0.0008	
2500	C3	$1,3044 \pm 0,0006$	$1,4458 \pm 0,0012$	
2500	C4	$1,7551 \pm 0,0009$	$1,7543 \pm 0,0019$	
2500	C5	$1,7849 \pm 0,0009$	$1,7567\pm0,0022$	
2500	C6	$1,7745 \pm 0,0008$	$1,6802 \pm 0,0013$	
2500	co	$53,376 \pm 1,5411$	$55,4449 \pm 1,0365$	
2500	D1	$1,6288 \pm 0,0008$	$1,5754 \pm 0,0015$	
2500	D2	0.9438 ± 0.0004	0.8598 ± 0.0008	
2500	D3	$1,3378 \pm 0,0006$	$1,3727 \pm 0,0012$	
2500	D4	$1,6898 \pm 0,0008$	$1,7429 \pm 0,0032$	
2500	D5	$1,6239 \pm 0,0008$	$1,8364 \pm 0,004$	
2500	D6	$1,\!5807 \pm 0,\!0007$	$1,9047 \pm 0,0017$	
2500	E1	$1,6652 \pm 0,0008$	$1,6736 \pm 0,0016$	
2500	E2	$0,8963 \pm 0,0004$	0.9137 ± 0.0009	
2500	E3	$1,3459 \pm 0,0006$	$1,4234 \pm 0,0012$	
2500	E4	$1,7171 \pm 0,0008$	$1,7005 \pm 0,0016$	
2500	E5	$1,665 \pm 0,0008$	$1,\!6437\pm0,\!0018$	
2500	E6	$1,681 \pm 0,0008$	$1,7004 \pm 0,0013$	
2500	F1	$1,6883 \pm 0,0008$	$1,5378 \pm 0,0012$	
2500	F2	$0,8992 \pm 0,0004$	0.8453 ± 0.0008	
2500	F3	$1,3329 \pm 0,0006$	$1,3744 \pm 0,0011$	
2500	F4	$1,6954 \pm 0,0008$	$1,7192 \pm 0,002$	
2500	F5	$1,658 \pm 0,0008$	$1,7491\pm0,0024$	
2500	F6	$1,5868 \pm 0,0007$	$1,9707 \pm 0,0016$	
2750	A1	$1,4795 \pm 0,0007$	$1,6223 \pm 0,0043$	
2750	A2	0.8348 ± 0.0004	$0,8819 \pm 0,0023$	
2750	A3	$1,\!2527\pm0,\!0006$	$1,4132 \pm 0,0037$	
2750	A4	$1,668 \pm 0,0007$	$1,7717\pm0,0048$	
2750	A5	$1,7072\pm0,0008$	$1,\!7706\pm0,\!0048$	
2750	A6	$1,7948 \pm 0,0008$	$1,9305 \pm 0,005$	
2750	B1	$1,611 \pm 0,0008$	$1,6195 \pm 0,0043$	
2750	B2	0.8491 ± 0.0006	0.9454 ± 0.0025	
2750	В3	$1,\!2787 \pm 0,\!0009$	$1,4596 \pm 0,0038$	
2750	B4	$1,7017\pm0,0008$	$1,7637\pm0,0047$	
2750	В5	$1,7306 \pm 0,0008$	$1,7717\pm0,005$	
2750	В6	$1,\!8077\pm0,\!0008$	$1,7437\pm0,0045$	
2750	C1	$1,\!5392\pm0,\!0008$	$1,6375 \pm 0,0043$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Cranning on [V]	Commonat	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
2750	C2	0.8663 ± 0.0005	0.9396 ± 0.0024	
2750	C3	$1,3044 \pm 0,0007$	$1,4375 \pm 0,0038$	
2750	C4	$1,7551 \pm 0,0009$	$1,7539 \pm 0,0047$	
2750	C5	$1,7849 \pm 0,0009$	$1,7599 \pm 0,0049$	
2750	C6	$1,7745\pm0,0008$	$1,6812 \pm 0,0044$	
2750	co	$53,376 \pm 1,5411$	$55,3961 \pm 1,036$	
2750	D1	$1,6288 \pm 0,0008$	$1,5732 \pm 0,0042$	
2750	D2	0.9438 ± 0.0005	$0,8605 \pm 0,0023$	
2750	D3	$1,3378 \pm 0,0007$	$1,3682 \pm 0,0036$	
2750	D4	$1,6898 \pm 0,0008$	$1,6977 \pm 0,9641$	
2750	D5	$1,6239 \pm 0,0008$	$1,8345 \pm 0,0061$	
2750	D6	$1,\!5807\pm0,\!0007$	$1,9046 \pm 0,005$	
2750	E1	$1,6652 \pm 0,0008$	$1,6718 \pm 0,0044$	
2750	E2	0.8963 ± 0.0005	0.9101 ± 0.0024	
2750	E3	$1,3459 \pm 0,0007$	$1,4235 \pm 0,0037$	
2750	E4	$1,7171 \pm 0,0008$	$1,7008 \pm 0,0045$	
2750	E5	$1,665 \pm 0,0008$	$1,6444 \pm 0,0045$	
2750	E6	$1,681 \pm 0,0008$	$1,7052 \pm 0,0044$	
2750	F1	$1,6883 \pm 0,0008$	$1,5504 \pm 0,004$	
2750	F2	$0,8992 \pm 0,0004$	0.8439 ± 0.0022	
2750	F3	$1,3329 \pm 0,0006$	$1,3739 \pm 0,0036$	
2750	F4	$1,6954 \pm 0,0008$	$1,7189 \pm 0,0047$	
2750	F5	$1,658 \pm 0,0008$	$1,7391 \pm 0,0049$	
2750	F6	$1,5868 \pm 0,0007$	$1,972 \pm 0,0051$	
3000	A1	$1,\!4727\pm0,\!0007$	$1,6229 \pm 0,0014$	
3000	A2	0.8302 ± 0.0004	0.8837 ± 0.0007	
3000	A3	$1,2472 \pm 0,0005$	$1,4124 \pm 0,0012$	
3000	A4	$1,6624 \pm 0,0007$	$1,7728 \pm 0,002$	
3000	A5	$1,7016 \pm 0,0008$	$1,7641 \pm 0,002$	
3000	A6	$1,7895 \pm 0,0008$	$1,9257 \pm 0,0014$	
3000	B1	$1,6022 \pm 0,0008$	$1,6153 \pm 0,0015$	
3000	B2	0.8431 ± 0.0004	0.943 ± 0.0008	
3000	В3	$1,2747 \pm 0,0006$	$1,4538 \pm 0,0013$	
3000	B4	$1,6958 \pm 0,0008$	$1,7677 \pm 0,0018$	
3000	В5	$1,7357 \pm 0,0008$	$1,7681 \pm 0,0025$	
3000	В6	$1,8062 \pm 0,0008$	$1,7405 \pm 0,0014$	
3000	C1	$1,5318 \pm 0,0008$	$1,6343 \pm 0,0015$	
3000	C2	$0,8621 \pm 0,0004$	0.9354 ± 0.0008	
3000	C3	$1,\!2984 \pm 0,\!0006$	$1,4352 \pm 0,0012$	
3000	C4	$1{,}7486\pm0{,}0009$	$1,7511 \pm 0,0019$	
Fortsetzung auf der nächsten Seite				

C [W]	G ,	Kapazi	tät [pF]	
Spannungen [V]	Segment	C005	C006	
3000	C5	$1,7797 \pm 0,0009$	$1,7573 \pm 0,0022$	
3000	C6	$1,7705 \pm 0,0008$	$1,6799 \pm 0,0013$	
3000	co	$53,1381 \pm 1,5385$	$55,3517 \pm 1,0356$	
3000	D1	$1,6194 \pm 0,0008$	$1,5706 \pm 0,0015$	
3000	D2	$0,9392 \pm 0,0004$	0.8592 ± 0.0008	
3000	D3	$1,3344 \pm 0,0006$	$1,3655 \pm 0,0012$	
3000	D4	$1,6836 \pm 0,0008$	$1,7248 \pm 0,0032$	
3000	D5	$1,6208 \pm 0,0008$	$1,8249 \pm 0,0041$	
3000	D6	$1,5796 \pm 0,0007$	$1,8945 \pm 0,0017$	
3000	E1	$1,6543 \pm 0,0008$	$1,6711 \pm 0,0017$	
3000	E2	$0,8868 \pm 0,0004$	$0,9114 \pm 0,0009$	
3000	E3	$1,3273 \pm 0,0006$	$1,4303 \pm 0,0012$	
3000	E4	$1,705 \pm 0,0008$	$1,6999 \pm 0,0017$	
3000	E5	$1,6595 \pm 0,0009$	$1,6475 \pm 0,0019$	
3000	E6	$1,6765 \pm 0,0008$	$1,7067 \pm 0,0013$	
3000	F1	$1,6813 \pm 0,0008$	$1,5416 \pm 0,0013$	
3000	F2	0.8936 ± 0.0004	0.8453 ± 0.0008	
3000	F3	$1,3053 \pm 0,0009$	$1,3695 \pm 0,0011$	
3000	F4	$1,6845 \pm 0,0008$	$1,7191 \pm 0,002$	
3000	F5	$1,6566 \pm 0,0008$	$1,7403 \pm 0,0024$	
3000	F6	$1,5779 \pm 0,0008$	$1,9664 \pm 0,0016$	
3250	A1	$1,4663 \pm 0,0007$	$1,621 \pm 0,0014$	
3250	A2	0.8283 ± 0.0004	0.8842 ± 0.0007	
3250	A3	$1,243 \pm 0,0005$	$1,4124 \pm 0,0012$	
3250	A4	$1,6558 \pm 0,0007$	$1,772 \pm 0,002$	
3250	A5	$1,6958 \pm 0,0008$	$1,7631 \pm 0,002$	
3250	A6	$1,7839 \pm 0,0008$	$1,925 \pm 0,0014$	
3250	B1	$1,5954 \pm 0,0008$	$1,6171 \pm 0,0015$	
3250	B2	0.8405 ± 0.0004	0.9411 ± 0.0008	
3250	В3	$1,2688 \pm 0,0006$	$1,4562 \pm 0,0013$	
3250	B4	$1,6892 \pm 0,0008$	$1,7625 \pm 0,0018$	
3250	В5	$1,7239 \pm 0,0008$	$1,7674 \pm 0,0025$	
3250	В6	$1,7973 \pm 0,0008$	$1,7415 \pm 0,0014$	
3250	C1	$1,5255 \pm 0,0008$	$1,632 \pm 0,0015$	
3250	C2	0.8589 ± 0.0004	0.9341 ± 0.0008	
3250	C3	$1,2947 \pm 0,0006$	$1,4297 \pm 0,0012$	
3250	C4	$1,7432 \pm 0,0009$	$1,7481 \pm 0,0019$	
3250	C5	$1,7753 \pm 0,0009$	$1,7583 \pm 0,0022$	
3250	C6	$1,7645 \pm 0,0008$	$1,6838 \pm 0,0013$	
3250	co	$52,9692 \pm 1,5366$	$55,3306 \pm 1,0354$	
Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channungan [V]	Comment	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
3250	D1	$1,6122 \pm 0,0008$	$1,5716 \pm 0,0015$	
3250	D2	0.9361 ± 0.0005	0.8563 ± 0.0008	
3250	D3	$1,3269 \pm 0,0006$	$1,3721 \pm 0,0012$	
3250	D4	$1,6775 \pm 0,0008$	$1,7371 \pm 0,0032$	
3250	D5	$1,6143 \pm 0,0008$	$1,8408 \pm 0,0042$	
3250	D6	$1,5713 \pm 0,0007$	$1,8998 \pm 0,0017$	
3250	E1	$1,6471 \pm 0,0008$	$1,67 \pm 0,0017$	
3250	E2	0.8876 ± 0.0004	$0,9095 \pm 0,0009$	
3250	E3	$1,3338 \pm 0,0006$	$1,4192 \pm 0,0012$	
3250	E4	$1,7035 \pm 0,0008$	$1,6988 \pm 0,0017$	
3250	E5	$1,6529 \pm 0,0008$	$1,6375 \pm 0,0019$	
3250	E6	$1,669 \pm 0,0008$	$1,6972 \pm 0,0013$	
3250	F1	$1,6722 \pm 0,0008$	$1,5385 \pm 0,0013$	
3250	F2	$0,891 \pm 0,0004$	0.8377 ± 0.0008	
3250	F3	$1,3211 \pm 0,0006$	$1,3722 \pm 0,0011$	
3250	F4	$1,6829 \pm 0,0008$	$1,7175 \pm 0,002$	
3250	F5	$1,6509 \pm 0,0008$	$1,7375 \pm 0,0024$	
3250	F6	$1,5683 \pm 0,0007$	$1,9678 \pm 0,0016$	
3500	A1	$1,4628 \pm 0,0007$	$1,6173 \pm 0,0014$	
3500	A2	0.826 ± 0.0004	$0,8807 \pm 0,0007$	
3500	A3	$1,2395 \pm 0,0005$	$1,4107 \pm 0,0012$	
3500	A4	$1,6536 \pm 0,0007$	$1,7678 \pm 0,002$	
3500	A5	$1,6924 \pm 0,0008$	$1,7676 \pm 0,002$	
3500	A6	$1,7814 \pm 0,0008$	$1,9283 \pm 0,0014$	
3500	B1	$1,5933 \pm 0,0008$	$1,6241 \pm 0,0015$	
3500	B2	0.8375 ± 0.0004	$0,9445 \pm 0,0008$	
3500	В3	$1,2678 \pm 0,0006$	$1,4499 \pm 0,0013$	
3500	B4	$1,6878 \pm 0,0008$	$1,7565 \pm 0,0018$	
3500	B5	$1,7254 \pm 0,0008$	$1,76 \pm 0,0025$	
3500	В6	$1,7959 \pm 0,0008$	$1,7359 \pm 0,0014$	
3500	C1	$1,5233 \pm 0,0008$	$1,6348 \pm 0,0015$	
3500	C2	0.8577 ± 0.0004	0.9387 ± 0.0008	
3500	C3	$1,2933 \pm 0,0006$	$1,4425 \pm 0,0012$	
3500	C4	$1,74 \pm 0,0009$	$1,7481 \pm 0,0019$	
3500	C5	$1,7718 \pm 0,0009$	$1,7534 \pm 0,0022$	
3500	C6	$1,7611 \pm 0,0008$	$1,6756 \pm 0,0013$	
3500	co	$52,8775 \pm 1,5355$	$55,2918 \pm 1,0351$	
3500	D1	$1,6093 \pm 0,0008$	$1,5671 \pm 0,0015$	
3500	D2	$0,9339 \pm 0,0005$	$0,8568 \pm 0,0008$	
3500	D3	$1,3248 \pm 0,0006$	$1,3689 \pm 0,0012$	
Fortsetzung auf der nächsten Seite				

G [17]	G .	Kapazi	tät [pF]		
Spannungen [V]	Segment	C005	C006		
3500	D4	$1,675 \pm 0,0008$	$1,7323 \pm 0,0033$		
3500	D5	$1,6131 \pm 0,0008$	$1,8301 \pm 0,0042$		
3500	D6	$1,5691 \pm 0,0007$	$1,8993 \pm 0,0018$		
3500	E1	$1,6424 \pm 0,0008$	$1,6659 \pm 0,0017$		
3500	E2	0.8847 ± 0.0004	$0,9094 \pm 0,0009$		
3500	E3	$1,3281 \pm 0,0006$	$1,4145 \pm 0,0012$		
3500	E4	$1,6993 \pm 0,0008$	$1,6938 \pm 0,0017$		
3500	E5	$1,6528 \pm 0,0008$	$1,6432 \pm 0,0019$		
3500	E6	$1,668 \pm 0,0008$	$1,7019 \pm 0,0013$		
3500	F1	$1,6679 \pm 0,0008$	$1,5377 \pm 0,0013$		
3500	F2	0.8898 ± 0.0004	0.8423 ± 0.0008		
3500	F3	$1,3186 \pm 0,0006$	$1,3694 \pm 0,0011$		
3500	F4	$1,6776 \pm 0,0008$	$1,7147 \pm 0,002$		
3500	F5	$1,6462 \pm 0,0008$	$1,7422 \pm 0,0024$		
3500	F6	$1,5661 \pm 0,0007$	$1,9658 \pm 0,0016$		
3750	A1	$1,4514 \pm 0,0007$	$1,6174 \pm 0,0014$		
3750	A2	0.8197 ± 0.0004	0.8815 ± 0.0007		
3750	A3	$1,2262 \pm 0,0005$	$1,4108 \pm 0,0012$		
3750	A4	$1,6415 \pm 0,0007$	$1,7695 \pm 0,002$		
3750	A5	$1,6836 \pm 0,0008$	$1,7668 \pm 0,002$		
3750	A6	$1,771 \pm 0,0008$	$1,9278 \pm 0,0014$		
3750	B1	$1,5819 \pm 0,0008$	$1,6124 \pm 0,0015$		
3750	B2	0.8332 ± 0.0004	0.9437 ± 0.0008		
3750	В3	$1,2584 \pm 0,0006$	$1,4492 \pm 0,0013$		
3750	B4	$1,6762 \pm 0,0008$	$1,7578 \pm 0,0018$		
3750	B5	$1,7149 \pm 0,0008$	$1,7598 \pm 0,0025$		
3750	В6	$1,7847 \pm 0,0008$	$1,736 \pm 0,0014$		
3750	C1	$1,5114 \pm 0,0008$	$1,6329 \pm 0,0015$		
3750	C2	0.8514 ± 0.0004	0.9328 ± 0.0008		
3750	C3	$1,2832 \pm 0,0006$	$1,4353 \pm 0,0012$		
3750	C4	$1,7284 \pm 0,0009$	$1,7448 \pm 0,002$		
3750	C5	$1,7609 \pm 0,0009$	$1,7559 \pm 0,0022$		
3750	C6	$1,7503 \pm 0,0008$	$1,6791 \pm 0,0013$		
3750	co	$52,5295 \pm 1,5317$	$55,2759 \pm 1,0349$		
3750	D1	$1,5975 \pm 0,0008$	$1,5728 \pm 0,0016$		
3750	D2	0.9273 ± 0.0004	0.8579 ± 0.0008		
3750	D3	$1,3163 \pm 0,0006$	$1,3732 \pm 0,0012$		
3750	D4	$1,6647 \pm 0,0008$	$1,7406 \pm 0,0034$		
3750	D5	$1,605 \pm 0,0008$	$1,8437 \pm 0,0043$		
3750	D6	$1,5607 \pm 0,0007$	$1,9005 \pm 0,0018$		
	Fortsetzung auf der nächsten Seite				

 $C.5\,$ Resultate der Pulsermessungen der Detektoren S002, B005, C005 und C006

Channungan [V]	Comment	Kapazität [pF]		
Spannungen [V]	Segment	C005	C006	
3750	E1	$1,6321 \pm 0,0008$	$1,6674 \pm 0,0017$	
3750	E2	0.8788 ± 0.0004	$0,9107 \pm 0,0009$	
3750	E3	$1,3193 \pm 0,0006$	$1,4141 \pm 0,0012$	
3750	E4	$1,6892 \pm 0,0008$	$1,6971 \pm 0,0017$	
3750	E5	$1,642 \pm 0,0008$	$1,6323 \pm 0,0019$	
3750	E6	$1,6579 \pm 0,0008$	$1,6879 \pm 0,0013$	
3750	F1	$1,6578 \pm 0,0008$	$1,5336 \pm 0,0013$	
3750	F2	0.8841 ± 0.0004	0.8366 ± 0.0008	
3750	F3	$1,3075 \pm 0,0006$	$1,3726 \pm 0,0011$	
3750	F4	$1,6689 \pm 0,0008$	$1,7175 \pm 0,002$	
3750	F5	$1,6354 \pm 0,0008$	$1,7361 \pm 0,0024$	
3750	F6	$1,5565 \pm 0,0007$	$1,9675 \pm 0,0016$	
4000	A1	$1,4514 \pm 0,0007$	$1,6202 \pm 0,0014$	
4000	A2	0.8197 ± 0.0004	0.8833 ± 0.0007	
4000	A3	$1,2262 \pm 0,0005$	$1,411 \pm 0,0012$	
4000	A4	$1,6415 \pm 0,0007$	$1,7713 \pm 0,0019$	
4000	A5	$1,6836 \pm 0,0008$	$1,7612 \pm 0,0019$	
4000	A6	$1,771 \pm 0,0009$	$1,9201 \pm 0,0014$	
4000	B1	$1,5819 \pm 0,0008$	$1,6116 \pm 0,0014$	
4000	B2	0.8332 ± 0.0004	0.943 ± 0.0008	
4000	В3	$1,2584 \pm 0,0006$	$1,4477 \pm 0,0012$	
4000	B4	$1,6762 \pm 0,0008$	$1,7575 \pm 0,0018$	
4000	B5	$1,7149 \pm 0,0008$	$1,7534 \pm 0,0023$	
4000	B6	$1,7847 \pm 0,0008$	$1,7363 \pm 0,0014$	
4000	C1	$1,5114 \pm 0,0008$	$1,6278 \pm 0,0014$	
4000	C2	0.8514 ± 0.0004	$0,9313 \pm 0,0008$	
4000	C3	$1,2832 \pm 0,0006$	$1,4298 \pm 0,0012$	
4000	C4	$1,7284 \pm 0,0009$	$1,7391 \pm 0,0018$	
4000	C5	$1,7609 \pm 0,0009$	$1,755 \pm 0,0021$	
4000	C6	$1,7503 \pm 0,0008$	$1,6753 \pm 0,0013$	
4000	co	$52,5295 \pm 1,5317$	$55,203 \pm 1,0343$	
4000	D1	$1,5975 \pm 0,0008$	$1,\!5651 \pm 0,\!0015$	
4000	D2	$0,9273 \pm 0,0004$	0.8541 ± 0.0008	
4000	D3	$1,3163 \pm 0,0006$	$1,3697 \pm 0,0012$	
4000	D4	$1,6647 \pm 0,0008$	$1,7337 \pm 0,003$	
4000	D5	$1,605 \pm 0,0008$	$1,8378 \pm 0,0038$	
4000	D6	$1,\!5607\pm0,\!0007$	$1,8975 \pm 0,0017$	
4000	E1	$1,6321 \pm 0,0008$	$1,6637 \pm 0,0016$	
4000	E2	0.8788 ± 0.0004	$0,9065 \pm 0,0008$	
4000	E3	$1,3193 \pm 0,0006$	$1,4154 \pm 0,0012$	
Fortsetzung auf der nächsten Seite				

C Pulsermessungen

Spannungen [V]	Segment	Kapazität [pF]	
	Beginent	C005	C006
4000	E4	$1,6892 \pm 0,0008$	$1,6932 \pm 0,0016$
4000	E5	$1,642 \pm 0,0008$	$1,6348 \pm 0,0018$
4000	E6	$1,6579 \pm 0,0008$	$1,6959 \pm 0,0013$
4000	F1	$1,6578 \pm 0,0008$	$1,5399 \pm 0,0012$
4000	F2	0.8841 ± 0.0004	0.8377 ± 0.0007
4000	F3	$1,3075 \pm 0,0006$	$1,3675 \pm 0,0011$
4000	F4	$1,6689 \pm 0,0008$	$1,7136 \pm 0,0019$
4000	F5	$1,6354 \pm 0,0008$	$1,7356 \pm 0,0022$
4000	F6	$1,\!5565\pm0,\!0007$	$1,9663 \pm 0,0016$

C.6 Bestimmung der Verunreinigungskonzentration

Tabelle C.5: Innenradius und Verunreinigung der hinteren vier Ringe des Detektors

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{ m}^{-3}]$	
A3	10	0.03101 ± 0.00097	1.923 ± 0.669	
A3	25	0.03032 ± 0.00095	1.235 ± 0.107	
A3	50	0.02953 ± 0.00092	1.265 ± 0.084	
A3	75	0.02887 ± 0.0009	1.218 ± 0.086	
A3	100	0.02831 ± 0.00088	1.264 ± 0.099	
A3	200	0.02655 ± 0.00083	1.103 ± 0.062	
A3	300	0.02513 ± 0.00079	1.073 ± 0.066	
A3	400	0.0239 ± 0.00075	1.066 ± 0.067	
A3	500	0.02278 ± 0.00071	1.063 ± 0.066	
A3	600	0.02176 ± 0.00068	1.079 ± 0.066	
A3	700	0.02077 ± 0.00065	1.065 ± 0.064	
A3	800	0.01982 ± 0.00062	1.091 ± 0.064	
A3	900	0.01893 ± 0.0006	1.092 ± 0.063	
A3	1000	0.01802 ± 0.00057	1.071 ± 0.06	
A3	1100	0.01713 ± 0.00054	1.065 ± 0.059	
A3	1250	0.0158 ± 0.0005	1.022 ± 0.055	
A3	1400	0.01444 ± 0.00046	0.979 ± 0.053	
A3	1500	0.01353 ± 0.00043	0.95 ± 0.055	
A3	1750	0.0113 ± 0.00036	0.881 ± 0.053	
A3	2000	0.00917 ± 0.0003	0.768 ± 0.059	
В3	10	0.03103 ± 0.00097	1.993 ± 0.686	
	Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$	
B3	25	0.03034 ± 0.00095	1.21 ± 0.108	
В3	50	0.02955 ± 0.00092	1.296 ± 0.086	
В3	75	0.0289 ± 0.0009	1.258 ± 0.088	
В3	100	0.02835 ± 0.00089	1.297 ± 0.102	
В3	200	0.02662 ± 0.00083	1.166 ± 0.064	
В3	300	0.02523 ± 0.00079	1.138 ± 0.068	
В3	400	0.02401 ± 0.00075	1.107 ± 0.068	
В3	500	0.02291 ± 0.00072	1.109 ± 0.068	
В3	600	0.02191 ± 0.00069	1.125 ± 0.068	
В3	700	0.02095 ± 0.00066	1.122 ± 0.067	
В3	800	0.02002 ± 0.00063	1.116 ± 0.065	
В3	900	0.01911 ± 0.0006	1.098 ± 0.063	
В3	1000	0.01821 ± 0.00057	1.097 ± 0.061	
В3	1100	0.01733 ± 0.00055	1.092 ± 0.061	
В3	1250	0.01601 ± 0.00051	1.051 ± 0.056	
В3	1400	0.01466 ± 0.00046	1.012 ± 0.054	
В3	1500	0.01379 ± 0.00044	0.985 ± 0.057	
В3	1750	0.01161 ± 0.00037	0.884 ± 0.053	
В3	2000	0.00944 ± 0.0003	0.747 ± 0.058	
C3	10	0.03103 ± 0.00097	1.914 ± 0.675	
C3	25	0.03033 ± 0.00095	1.149 ± 0.105	
C3	50	0.02952 ± 0.00092	1.23 ± 0.084	
C3	75	0.02886 ± 0.0009	1.192 ± 0.086	
C3	100	0.0283 ± 0.00088	1.23 ± 0.099	
C3	200	0.02654 ± 0.00083	1.095 ± 0.062	
C3	300	0.02513 ± 0.00079	1.076 ± 0.066	
C3	400	0.0239 ± 0.00075	1.058 ± 0.067	
C3	500	0.02279 ± 0.00071	1.058 ± 0.067	
C3	600	0.02176 ± 0.00068	1.066 ± 0.066	
C3	700	0.02078 ± 0.00065	1.077 ± 0.065	
C3	800	0.01986 ± 0.00062	1.072 ± 0.064	
C3	900	0.01892 ± 0.0006	1.047 ± 0.061	
C3	1000	0.018 ± 0.00057	1.047 ± 0.059	
C3	1100	0.0171 ± 0.00054	1.057 ± 0.059	
C3	1250	0.01579 ± 0.0005	1.038 ± 0.056	
C3	1400	0.01444 ± 0.00046	0.979 ± 0.053	
C3	1500	0.01352 ± 0.00043	0.944 ± 0.054	
C3	1750	0.01132 ± 0.00036	0.888 ± 0.053	
C3	2000	0.00916 ± 0.0003	0.762 ± 0.058	
D3	10	0.03101 ± 0.00097	1.905 ± 0.654	
D3	25	0.0303 ± 0.00095	1.219 ± 0.103	
	Fortsetzung auf der nächsten Seite			

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$	
D3	50	0.02949 ± 0.00092	1.235 ± 0.082	
D3	75	0.02883 ± 0.0009	1.189 ± 0.084	
D3	100	0.02826 ± 0.00088	1.214 ± 0.097	
D3	200	0.02648 ± 0.00083	1.071 ± 0.06	
D3	300	0.02505 ± 0.00078	1.053 ± 0.065	
D3	400	0.0238 ± 0.00075	1.043 ± 0.065	
D3	500	0.02268 ± 0.00071	1.051 ± 0.066	
D3	600	0.02164 ± 0.00068	1.068 ± 0.065	
D3	700	0.02066 ± 0.00065	1.073 ± 0.064	
D3	800	0.01972 ± 0.00062	1.073 ± 0.063	
D3	900	0.0188 ± 0.00059	1.071 ± 0.062	
D3	1000	0.0179 ± 0.00056	1.067 ± 0.06	
D3	1100	0.01701 ± 0.00054	1.053 ± 0.059	
D3	1250	0.01567 ± 0.0005	1.022 ± 0.055	
D3	1400	0.01432 ± 0.00045	0.978 ± 0.053	
D3	1500	0.01341 ± 0.00043	0.951 ± 0.055	
D3	1750	0.01121 ± 0.00036	0.893 ± 0.054	
D3	2000	0.0091 ± 0.00029	0.772 ± 0.059	
E3	10	0.03104 ± 0.00097	2.011 ± 0.699	
E3	25	0.03036 ± 0.00095	1.203 ± 0.11	
E3	50	0.02958 ± 0.00092	1.339 ± 0.088	
E3	75	0.02893 ± 0.0009	1.257 ± 0.09	
E3	100	0.02839 ± 0.00089	1.277 ± 0.104	
E3	200	0.02667 ± 0.00083	1.188 ± 0.065	
E3	300	0.0253 ± 0.00079	1.151 ± 0.069	
E3	400	0.02409 ± 0.00075	1.14 ± 0.07	
E3	500	0.02301 ± 0.00072	1.149 ± 0.07	
E3	600	0.02201 ± 0.00069	1.142 ± 0.069	
E3	700	0.02105 ± 0.00066	1.134 ± 0.067	
E3	800	0.02013 ± 0.00063	1.137 ± 0.066	
E3	900	0.01924 ± 0.0006	1.129 ± 0.064	
E3	1000	0.01836 ± 0.00058	1.105 ± 0.062	
E3	1100	0.01745 ± 0.00055	1.077 ± 0.06	
E3	1250	0.01615 ± 0.00051	1.069 ± 0.057	
E3	1400	0.01482 ± 0.00047	1.025 ± 0.055	
E3	1500	0.01395 ± 0.00044	0.976 ± 0.056	
E3	1750	0.01169 ± 0.00037	0.868 ± 0.052	
E3	2000	0.00954 ± 0.00031	0.756 ± 0.058	
F3	10	0.03105 ± 0.00097	2.01 ± 0.714	
F3	25	0.03037 ± 0.00095	1.189 ± 0.111	
F3	50	0.0296 ± 0.00093	1.326 ± 0.089	
	Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
F3	75	0.02896 ± 0.00091	1.236 ± 0.091
F3	100	0.02841 ± 0.00089	1.22 ± 0.105
F3	200	0.02671 ± 0.00084	1.158 ± 0.065
F3	300	0.02534 ± 0.00079	1.127 ± 0.07
F3	400	0.02414 ± 0.00076	1.119 ± 0.07
F3	500	0.02305 ± 0.00072	1.135 ± 0.07
F3	600	0.02206 ± 0.00069	1.132 ± 0.07
F3	700	0.0211 ± 0.00066	1.122 ± 0.068
F3	800	0.02019 ± 0.00063	1.121 ± 0.066
F3	900	0.01929 ± 0.00061	1.111 ± 0.064
F3	1000	0.01841 ± 0.00058	1.097 ± 0.062
F3	1100	0.01752 ± 0.00055	1.083 ± 0.061
F3	1250	0.01622 ± 0.00051	1.059 ± 0.057
F3	1400	0.01488 ± 0.00047	1.007 ± 0.054
F3	1500	0.014 ± 0.00044	0.979 ± 0.056
F3	1750	0.01182 ± 0.00038	0.898 ± 0.054
F3	2000	0.00971 ± 0.00031	0.767 ± 0.058
A4	10	0.03387 ± 0.00097	1.525 ± 0.507
A4	25	0.03308 ± 0.00095	1.061 ± 0.078
A4	50	0.03217 ± 0.00092	0.941 ± 0.06
A4	75	0.03141 ± 0.0009	0.924 ± 0.061
A4	100	0.03076 ± 0.00088	0.922 ± 0.07
A4	200	0.02871 ± 0.00082	0.824 ± 0.042
A4	300	0.02705 ± 0.00077	0.801 ± 0.045
A4	400	0.0256 ± 0.00073	0.789 ± 0.045
A4	500	0.02428 ± 0.0007	0.784 ± 0.045
A4	600	0.02309 ± 0.00066	0.786 ± 0.046
A4	700	0.02196 ± 0.00063	0.78 ± 0.045
A4	800	0.02089 ± 0.0006	0.782 ± 0.045
A4	900	0.01988 ± 0.00057	0.795 ± 0.046
A4	1000	0.01892 ± 0.00054	0.791 ± 0.046
A4	1100	0.01795 ± 0.00052	0.783 ± 0.045
A4	1250	0.01655 ± 0.00048	0.781 ± 0.044
A4	1400	0.01516 ± 0.00044	0.779 ± 0.043
A4	1500	0.01425 ± 0.00041	0.784 ± 0.045
A4	1750	0.01198 ± 0.00035	0.792 ± 0.043
A4	2000	0.00972 ± 0.00029	0.786 ± 0.045
B4	10	0.0339 ± 0.00097	1.603 ± 0.532
B4	25	0.03313 ± 0.00095	1.007 ± 0.082
B4	50	0.03224 ± 0.00092	1.01 ± 0.063
B4	75	0.0315 ± 0.0009	0.939 ± 0.064
Fortsetzung auf der nächsten Seite			

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
B4	100	0.03086 ± 0.00088	0.949 ± 0.074
B4	200	0.02888 ± 0.00083	0.868 ± 0.044
B4	300	0.02727 ± 0.00078	0.842 ± 0.047
B4	400	0.02586 ± 0.00074	0.826 ± 0.048
B4	500	0.02459 ± 0.0007	0.824 ± 0.048
B4	600	0.02343 ± 0.00067	0.826 ± 0.048
B4	700	0.02234 ± 0.00064	0.818 ± 0.048
B4	800	0.0213 ± 0.00061	0.816 ± 0.048
B4	900	0.0203 ± 0.00058	0.814 ± 0.047
B4	1000	0.01935 ± 0.00056	0.816 ± 0.047
B4	1100	0.01841 ± 0.00053	0.81 ± 0.047
B4	1250	0.01704 ± 0.00049	0.794 ± 0.045
B4	1400	0.01563 ± 0.00045	0.788 ± 0.044
B4	1500	0.01474 ± 0.00043	0.801 ± 0.046
B4	1750	0.01249 ± 0.00036	0.791 ± 0.043
B4	2000	0.01021 ± 0.0003	0.771 ± 0.044
C4	10	0.03388 ± 0.00097	1.494 ± 0.509
C4	25	0.03308 ± 0.00095	0.935 ± 0.077
C4	50	0.03216 ± 0.00092	0.929 ± 0.06
C4	75	0.0314 ± 0.0009	0.871 ± 0.061
C4	100	0.03075 ± 0.00088	0.886 ± 0.07
C4	200	0.02869 ± 0.00082	0.79 ± 0.042
C4	300	0.02703 ± 0.00077	0.774 ± 0.045
C4	400	0.02557 ± 0.00073	0.761 ± 0.045
C4	500	0.02426 ± 0.00069	0.76 ± 0.045
C4	600	0.02306 ± 0.00066	0.764 ± 0.046
C4	700	0.02194 ± 0.00063	0.77 ± 0.046
C4	800	0.02089 ± 0.0006	0.766 ± 0.046
C4	900	0.01986 ± 0.00057	0.763 ± 0.045
C4	1000	0.01888 ± 0.00054	0.758 ± 0.045
C4	1100	0.01789 ± 0.00052	0.77 ± 0.045
C4	1250	0.01654 ± 0.00048	0.782 ± 0.045
C4	1400	0.01513 ± 0.00044	0.761 ± 0.043
C4	1500	0.01421 ± 0.00041	0.78 ± 0.045
C4	1750	0.012 ± 0.00035	0.794 ± 0.043
C4	2000	0.00969 ± 0.00029	0.777 ± 0.045
D4	10	0.03389 ± 0.00097	1.568 ± 0.517
D4	25	0.0331 ± 0.00095	1.062 ± 0.079
D4	50	0.03218 ± 0.00092	0.941 ± 0.061
D4	75	0.03143 ± 0.0009	0.924 ± 0.062
D4	100	0.03078 ± 0.00088	0.945 ± 0.071
Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$	
D4	200	0.02875 ± 0.00082	0.833 ± 0.043	
D4	300	0.0271 ± 0.00078	0.816 ± 0.046	
D4	400	0.02567 ± 0.00073	0.805 ± 0.046	
D4	500	0.02438 ± 0.0007	0.799 ± 0.046	
D4	600	0.02319 ± 0.00066	0.797 ± 0.046	
D4	700	0.02208 ± 0.00063	0.799 ± 0.046	
D4	800	0.02103 ± 0.0006	0.795 ± 0.046	
D4	900	0.02001 ± 0.00058	0.793 ± 0.046	
$\overline{\mathrm{D4}}$	1000	0.01903 ± 0.00055	0.798 ± 0.046	
$\overline{\mathrm{D4}}$	1100	0.0181 ± 0.00052	0.795 ± 0.046	
$\overline{\mathrm{D4}}$	1250	0.01668 ± 0.00048	0.789 ± 0.044	
D4	1400	0.01534 ± 0.00044	0.78 ± 0.043	
D4	1500	0.01439 ± 0.00042	0.768 ± 0.044	
D4	1750	0.01214 ± 0.00035	0.798 ± 0.044	
D4	2000	0.00989 ± 0.00029	0.784 ± 0.045	
E4	10	0.03392 ± 0.00097	1.676 ± 0.553	
E4	25	0.03316 ± 0.00095	1.046 ± 0.085	
E4	50	0.03229 ± 0.00092	1.052 ± 0.066	
E4	75	0.03156 ± 0.0009	0.968 ± 0.067	
E4	100	0.03094 ± 0.00088	0.96 ± 0.076	
E4	200	0.02899 ± 0.00083	0.901 ± 0.046	
E4	300	0.02741 ± 0.00078	0.866 ± 0.049	
E4	400	0.02601 ± 0.00074	0.85 ± 0.049	
E4	500	0.02476 ± 0.00071	0.842 ± 0.049	
E4	600	0.02361 ± 0.00068	0.836 ± 0.049	
E4	700	0.02251 ± 0.00065	0.826 ± 0.048	
E4	800	0.02148 ± 0.00062	0.823 ± 0.048	
E4	900	0.02048 ± 0.00059	0.828 ± 0.048	
E4	1000	0.01955 ± 0.00056	0.827 ± 0.048	
E4	1100	0.01859 ± 0.00054	0.809 ± 0.047	
E4	1250	0.01723 ± 0.0005	0.804 ± 0.045	
E4	1400	0.01584 ± 0.00046	0.796 ± 0.044	
E4	1500	0.01495 ± 0.00043	0.797 ± 0.046	
E4	1750	0.01267 ± 0.00037	0.784 ± 0.043	
E4	2000	0.01038 ± 0.0003	0.77 ± 0.044	
F4	10	0.03393 ± 0.00097	1.637 ± 0.555	
F4	25	0.03316 ± 0.00095	1.012 ± 0.085	
F4	50	0.03229 ± 0.00092	1.025 ± 0.066	
F4	75	0.03156 ± 0.0009	0.942 ± 0.067	
F4	100	0.03094 ± 0.00088	0.936 ± 0.076	
F4	200	0.02899 ± 0.00083	0.878 ± 0.046	
	Fortsetzung auf der nächsten Seite			

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
F4	300	0.02741 ± 0.00078	0.845 ± 0.049
F4	400	0.02602 ± 0.00074	0.832 ± 0.049
F4	500	0.02477 ± 0.00071	0.825 ± 0.049
F4	600	0.02362 ± 0.00068	0.819 ± 0.049
F4	700	0.02253 ± 0.00065	0.815 ± 0.049
F4	800	0.02151 ± 0.00062	0.819 ± 0.049
F4	900	0.02052 ± 0.00059	0.814 ± 0.048
F4	1000	0.01957 ± 0.00056	0.801 ± 0.047
F4	1100	0.01861 ± 0.00054	0.793 ± 0.047
F4	1250	0.01725 ± 0.0005	0.799 ± 0.046
F4	1400	0.01587 ± 0.00046	0.798 ± 0.045
F4	1500	0.015 ± 0.00043	0.806 ± 0.047
F4	1750	0.01276 ± 0.00037	0.786 ± 0.043
F4	2000	0.01046 ± 0.00031	0.768 ± 0.044
A5	10	0.0367 ± 0.00097	1.233 ± 0.382
A5	25	0.0358 ± 0.00094	0.844 ± 0.058
A5	50	0.03475 ± 0.00091	0.798 ± 0.044
A5	75	0.03389 ± 0.00089	0.723 ± 0.044
A5	100	0.03314 ± 0.00087	0.789 ± 0.05
A5	200	0.03076 ± 0.00081	0.645 ± 0.029
A5	300	0.0288 ± 0.00076	0.626 ± 0.031
A5	400	0.02708 ± 0.00071	0.627 ± 0.031
A5	500	0.02553 ± 0.00067	0.613 ± 0.031
A5	600	0.02411 ± 0.00064	0.619 ± 0.031
A5	700	0.02275 ± 0.0006	0.61 ± 0.031
A5	800	0.02146 ± 0.00057	0.613 ± 0.03
A5	900	0.02022 ± 0.00054	0.642 ± 0.032
A5	1000	0.01919 ± 0.00051	0.68 ± 0.034
A5	1100	0.01808 ± 0.00048	0.643 ± 0.032
A5	1250	0.01644 ± 0.00044	0.645 ± 0.032
A5	1400	0.01487 ± 0.0004	0.658 ± 0.032
A5	1500	0.01383 ± 0.00037	0.675 ± 0.034
A5	1750	0.01142 ± 0.00031	0.753 ± 0.036
A5	2000	0.0092 ± 0.00025	0.85 ± 0.042
B5	10	0.03673 ± 0.00097	1.319 ± 0.403
B5	25	0.03586 ± 0.00094	0.89 ± 0.062
B5	50	0.03484 ± 0.00092	0.887 ± 0.046
B5	75	0.03399 ± 0.00089	0.768 ± 0.047
B5	100	0.03326 ± 0.00088	0.782 ± 0.053
B5	200	0.03095 ± 0.00082	0.701 ± 0.031
B5	300	0.02907 ± 0.00077	0.679 ± 0.032
Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$	
B5	400	0.02739 ± 0.00072	0.663 ± 0.032	
B5	500	0.02739 ± 0.00072 0.02589 ± 0.00068	0.662 ± 0.032 0.662 ± 0.033	
B5	600	0.02452 ± 0.00065	0.658 ± 0.033	
B5	700	0.02319 ± 0.00061	0.643 ± 0.032	
B5	800	0.02194 ± 0.00058	0.645 ± 0.032 0.645 ± 0.032	
B5	900	0.02134 ± 0.00050 0.02073 ± 0.00055	0.673 ± 0.032 0.673 ± 0.033	
B5	1000	0.01969 ± 0.00052	0.704 ± 0.035	
B5	1100	0.01862 ± 0.0005	0.673 ± 0.034	
B5	1250	0.01701 ± 0.00045	0.657 ± 0.032	
B5	1400	0.01701 ± 0.00045 0.01541 ± 0.00041	0.659 ± 0.032	
B5	1500	0.01941 ± 0.00041 0.01438 ± 0.00039	0.685 ± 0.035	
B5	1750	0.01196 ± 0.00033 0.01196 ± 0.00032	0.739 ± 0.036	
B5	2000	0.00966 ± 0.00026	0.824 ± 0.041	
C5	10	0.03671 ± 0.00027	1.261 ± 0.389	
C5	$\frac{10}{25}$	0.03581 ± 0.00094	0.855 ± 0.059	
C5	50	0.03478 ± 0.00092	0.809 ± 0.044	
C5	75	0.03470 ± 0.00032 0.03391 ± 0.00089	0.724 ± 0.045	
C5	100	0.03316 ± 0.00087	0.731 ± 0.051	
C5	200	0.03079 ± 0.00081	0.655 ± 0.029	
C5	300	0.02885 ± 0.00076	0.632 ± 0.031	
C5	400	0.02715 ± 0.00072	0.622 ± 0.031	
C5	500	0.02559 ± 0.00068	0.616 ± 0.031	
C5	600	0.02419 ± 0.00064	0.622 ± 0.031	
C5	700	0.02285 ± 0.0006	0.614 ± 0.031	
C5	800	0.02157 ± 0.00057	0.614 ± 0.031	
C5	900	0.02035 ± 0.00054	0.651 ± 0.033	
C5	1000	0.01932 ± 0.00051	0.678 ± 0.034	
C5	1100	0.01821 ± 0.00048	0.639 ± 0.032	
C5	1250	0.01656 ± 0.00044	0.633 ± 0.031	
C5	1400	0.01495 ± 0.0004	0.644 ± 0.032	
C5	1500	0.01391 ± 0.00037	0.67 ± 0.034	
C5	1750	0.01144 ± 0.00031	0.735 ± 0.035	
C5	2000	0.00917 ± 0.00025	0.837 ± 0.042	
D5	10	0.03674 ± 0.00097	1.251 ± 0.403	
D5	25	0.03585 ± 0.00094	0.821 ± 0.061	
D5	50	0.03483 ± 0.00092	0.896 ± 0.046	
D5	75	0.03398 ± 0.00089	0.744 ± 0.046	
D5	100	0.03324 ± 0.00088	0.744 ± 0.052	
D5	200	0.03091 ± 0.00081	0.677 ± 0.03	
D5	300	0.029 ± 0.00076	0.665 ± 0.032	
D5	400	0.02733 ± 0.00072	0.649 ± 0.032	
	Fortsetzung auf der nächsten Seite			

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
D5	500	0.02582 ± 0.00068	0.646 ± 0.032
D5	600	0.02442 ± 0.00065	0.642 ± 0.032
D5	700	0.0231 ± 0.00061	0.638 ± 0.032
D5	800	0.02185 ± 0.00058	0.633 ± 0.032
D5	900	0.02063 ± 0.00055	0.662 ± 0.033
D5	1000	0.0196 ± 0.00052	0.689 ± 0.035
D5	1100	0.0185 ± 0.00049	0.654 ± 0.033
D5	1250	0.01688 ± 0.00045	0.645 ± 0.032
D5	1400	0.01526 ± 0.00041	0.648 ± 0.032
D5	1500	0.01423 ± 0.00038	0.672 ± 0.034
D5	1750	0.01178 ± 0.00032	0.731 ± 0.035
D5	2000	0.00948 ± 0.00026	0.816 ± 0.041
E5	10	0.03676 ± 0.00097	1.349 ± 0.415
E5	25	0.03588 ± 0.00094	0.888 ± 0.063
E5	50	0.03488 ± 0.00092	0.911 ± 0.047
E5	75	0.03404 ± 0.0009	0.794 ± 0.048
E5	100	0.03333 ± 0.00088	0.781 ± 0.054
E5	200	0.03104 ± 0.00082	0.719 ± 0.031
E5	300	0.02915 ± 0.00077	0.689 ± 0.033
E5	400	0.02751 ± 0.00073	0.675 ± 0.033
E5	500	0.026 ± 0.00069	0.663 ± 0.033
E5	600	0.02463 ± 0.00065	0.661 ± 0.033
E5	700	0.0233 ± 0.00062	0.649 ± 0.032
E5	800	0.02205 ± 0.00058	0.647 ± 0.032
E5	900	0.02085 ± 0.00055	0.679 ± 0.034
E5	1000	0.01982 ± 0.00053	0.709 ± 0.035
E5	1100	0.01874 ± 0.0005	0.668 ± 0.033
E5	1250	0.01711 ± 0.00046	0.652 ± 0.032
E5	1400	0.0155 ± 0.00042	0.642 ± 0.031
E5	1500	0.01441 ± 0.00039	0.654 ± 0.033
E5	1750	0.01193 ± 0.00032	0.737 ± 0.035
E5	2000	0.0097 ± 0.00027	0.825 ± 0.041
F5	10	0.03675 ± 0.00097	1.31 ± 0.412
F5	25	0.03588 ± 0.00094	0.88 ± 0.063
F5	50	0.03488 ± 0.00092	0.899 ± 0.048
F5	75	0.03405 ± 0.0009	0.777 ± 0.048
F5	100	0.03334 ± 0.00088	0.775 ± 0.055
F5	200	0.03108 ± 0.00082	0.713 ± 0.032
F5	300	0.02921 ± 0.00077	0.68 ± 0.033
F5	400	0.02757 ± 0.00073	0.667 ± 0.033
F5	500	0.02608 ± 0.00069	0.66 ± 0.033
Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
F5	600	0.02472 ± 0.00065	0.648 ± 0.033
F5	700	0.02337 ± 0.00062	0.64 ± 0.032
F5	800	0.02216 ± 0.00059	0.653 ± 0.033
F5	900	0.02096 ± 0.00056	0.682 ± 0.034
F5	1000	0.01997 ± 0.00053	0.7 ± 0.035
F5	1100	0.01884 ± 0.0005	0.641 ± 0.032
F5	1250	0.0172 ± 0.00046	0.64 ± 0.032
F5	1400	0.01559 ± 0.00042	0.667 ± 0.033
F5	1500	0.01461 ± 0.00039	0.7 ± 0.036
F5	1750	0.01221 ± 0.00033	0.728 ± 0.035
F5	2000	0.00987 ± 0.00027	0.805 ± 0.04
A6	10	0.03854 ± 0.00049	0.936 ± 0.358
A6	25	0.03758 ± 0.00049	0.633 ± 0.077
A6	50	0.03643 ± 0.0005	0.567 ± 0.065
A6	75	0.03547 ± 0.00052	0.554 ± 0.065
A6	100	0.03466 ± 0.00053	0.628 ± 0.074
A6	200	0.03212 ± 0.00059	0.503 ± 0.046
A6	300	0.02992 ± 0.00065	0.475 ± 0.043
A6	400	0.0281 ± 0.00071	0.503 ± 0.041
A6	500	0.02639 ± 0.00075	0.478 ± 0.037
A6	600	0.02482 ± 0.00079	0.468 ± 0.033
A6	700	0.02325 ± 0.00083	0.463 ± 0.028
A6	800	0.02178 ± 0.00086	0.465 ± 0.026
A6	900	0.02037 ± 0.00089	0.612 ± 0.029
A6	1000	0.01975 ± 0.0009	0.746 ± 0.032
A6	1100	0.01854 ± 0.00091	0.54 ± 0.02
A6	1250	0.01676 ± 0.00092	0.542 ± 0.016
A6	1400	0.01504 ± 0.00093	0.564 ± 0.014
A6	1500	0.01395 ± 0.00092	0.635 ± 0.017
A6	1750	0.01171 ± 0.0009	0.826 ± 0.029
A6	2000	0.00993 ± 0.00086	1.077 ± 0.055
В6	10	0.03859 ± 0.00049	0.986 ± 0.38
B6	25	0.03765 ± 0.00049	0.682 ± 0.08
B6	50	0.0365 ± 0.0005	0.633 ± 0.066
В6	75	0.03556 ± 0.00051	0.57 ± 0.067
В6	100	0.03475 ± 0.00053	0.6 ± 0.076
В6	200	0.03224 ± 0.00059	0.532 ± 0.048
В6	300	0.03013 ± 0.00065	0.515 ± 0.046
В6	400	0.02833 ± 0.0007	0.522 ± 0.043
В6	500	0.02665 ± 0.00075	0.508 ± 0.039
В6	600	0.02512 ± 0.00079	0.507 ± 0.035
Fortsetzung auf der nächsten Seite			

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
B6	700	0.02361 ± 0.00082	0.489 ± 0.031
B6	800	0.02219 ± 0.00085	0.497 ± 0.028
B6	900	0.02081 ± 0.00088	0.645 ± 0.032
B6	1000	0.02019 ± 0.00089	0.748 ± 0.034
В6	1100	0.01896 ± 0.00091	0.542 ± 0.021
В6	1250	0.01717 ± 0.00092	0.544 ± 0.017
В6	1400	0.01541 ± 0.00093	0.571 ± 0.014
В6	1500	0.01433 ± 0.00093	0.638 ± 0.016
В6	1750	0.01201 ± 0.0009	0.799 ± 0.026
В6	2000	0.01016 ± 0.00087	1.049 ± 0.051
C6	10	0.03852 ± 0.00049	0.902 ± 0.344
C6	25	0.03752 ± 0.00049	0.618 ± 0.072
C6	50	0.03632 ± 0.0005	0.525 ± 0.06
C6	75	0.03533 ± 0.00052	0.528 ± 0.061
C6	100	0.03449 ± 0.00053	0.515 ± 0.069
C6	200	0.03186 ± 0.0006	0.486 ± 0.043
C6	300	0.02966 ± 0.00066	0.471 ± 0.041
C6	400	0.02781 ± 0.00071	0.478 ± 0.039
C6	500	0.02609 ± 0.00076	0.474 ± 0.036
C6	600	0.02453 ± 0.0008	0.474 ± 0.032
C6	700	0.02296 ± 0.00084	0.455 ± 0.028
C6	800	0.02149 ± 0.00087	0.455 ± 0.024
C6	900	0.02006 ± 0.00089	0.595 ± 0.027
C6	1000	0.01938 ± 0.0009	0.708 ± 0.03
C6	1100	0.01816 ± 0.00091	0.527 ± 0.019
C6	1250	0.01635 ± 0.00093	0.533 ± 0.015
C6	1400	0.01461 ± 0.00093	0.557 ± 0.014
C6	1500	0.01348 ± 0.00092	0.611 ± 0.017
C6	1750	0.01111 ± 0.00089	0.792 ± 0.031
C6	2000	0.00925 ± 0.00084	1.073 ± 0.062
D6	10	0.03856 ± 0.00049	0.941 ± 0.363
D6	25	0.03759 ± 0.00049	0.635 ± 0.076
D6	50	0.03643 ± 0.0005	0.577 ± 0.064
D6	75	0.03546 ± 0.00052	0.544 ± 0.064
D6	100	0.03464 ± 0.00053	0.618 ± 0.073
D6	200	0.03209 ± 0.00059	0.489 ± 0.046
D6	300	0.02991 ± 0.00065	0.489 ± 0.043
D6	400	0.02811 ± 0.00071	0.51 ± 0.042
D6	500	0.02642 ± 0.00075	0.479 ± 0.038
D6	600	0.02487 ± 0.00079	0.49 ± 0.034
D6	700	0.02336 ± 0.00083	0.471 ± 0.03
Fortsetzung auf der nächsten Seite			

C.6 Bestimmung der Verunreinigungskonzentration

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
D6	800	0.0219 ± 0.00086	0.471 ± 0.026
D6	900	0.02048 ± 0.00088	0.583 ± 0.028
D6	1000	0.01974 ± 0.0009	0.685 ± 0.03
D6	1100	0.01852 ± 0.00091	0.532 ± 0.02
D6	1250	0.01671 ± 0.00092	0.532 ± 0.015
D6	1400	0.01494 ± 0.00093	0.546 ± 0.014
D6	1500	0.01379 ± 0.00092	0.594 ± 0.016
D6	1750	0.01136 ± 0.00089	0.768 ± 0.029
D6	2000	0.00946 ± 0.00085	1.037 ± 0.058
E6	10	0.03856 ± 0.00049	0.963 ± 0.363
E6	25	0.03759 ± 0.00049	0.681 ± 0.077
E6	50	0.03649 ± 0.0005	0.635 ± 0.069
E6	75	0.03556 ± 0.00051	0.586 ± 0.068
E6	100	0.03477 ± 0.00053	0.614 ± 0.078
E6	200	0.03236 ± 0.00059	0.554 ± 0.05
E6	300	0.03013 ± 0.00065	0.503 ± 0.044
E6	400	0.0284 ± 0.0007	0.53 ± 0.044
E6	500	0.02668 ± 0.00075	0.492 ± 0.038
E6	600	0.02512 ± 0.00079	0.498 ± 0.035
E6	700	0.02359 ± 0.00082	0.486 ± 0.03
E6	800	0.02215 ± 0.00085	0.489 ± 0.027
E6	900	0.02075 ± 0.00088	0.609 ± 0.03
E6	1000	0.02002 ± 0.00089	0.703 ± 0.031
E6	1100	0.0188 ± 0.00091	0.533 ± 0.021
E6	1250	0.01694 ± 0.00092	0.532 ± 0.016
E6	1400	0.01518 ± 0.00093	0.553 ± 0.014
E6	1500	0.01402 ± 0.00092	0.6 ± 0.016
E6	1750	0.01159 ± 0.0009	0.786 ± 0.028
E6	2000	0.00977 ± 0.00086	1.054 ± 0.055
F6	10	0.03858 ± 0.00049	0.96 ± 0.377
F6	25	0.03764 ± 0.00049	0.674 ± 0.081
F6	50	0.03655 ± 0.0005	0.665 ± 0.072
F6	75	0.03565 ± 0.00051	0.593 ± 0.071
F6	100	0.03487 ± 0.00053	0.62 ± 0.081
F6	200	0.03249 ± 0.00058	0.559 ± 0.052
F6	300	0.03033 ± 0.00064	0.509 ± 0.046
F6	400	0.0286 ± 0.00069	0.535 ± 0.046
F6	500	0.02693 ± 0.00074	0.506 ± 0.04
F6	600	0.0254 ± 0.00078	0.504 ± 0.036
F6	700	0.02389 ± 0.00082	0.491 ± 0.032
F6	800	0.02248 ± 0.00085	0.485 ± 0.028
Fortsetzung auf der nächsten Seite			

C Pulsermessungen

Segment	Spannung [V]	Innenradius [m]	Verunreinigung $[10^{16} \times \text{m}^{-3}]$
F6	900	0.02105 ± 0.00087	0.62 ± 0.032
F6	1000	0.02041 ± 0.00089	0.738 ± 0.035
F6	1100	0.01919 ± 0.0009	0.538 ± 0.022
F6	1250	0.01741 ± 0.00092	0.545 ± 0.017
F6	1400	0.01566 ± 0.00093	0.559 ± 0.014
F6	1500	0.01455 ± 0.00093	0.623 ± 0.016
F6	1750	0.01227 ± 0.00091	0.798 ± 0.025
F6	2000	0.01042 ± 0.00087	1.028 ± 0.047

Erklärung

Hiermit bestätige ich, dass ich meine Diplomarbeit selbstständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht habe.

Köln, den 12. November 2009

Benedikt Birkenbach